References
- 1. S. Z. Szatmári and P. J. Whitehouse, Vinpocetine for cognitive impairment and dementia, Cochrane Database Syst. Rev. 1 (2003) CD003119; https://doi.org/10.1002/14651858.CD003119840698112535455
- 2. M. Wang, L. Wang, J. Sun, L. Zhang, L. Zhao and X. Xiong, Simultaneous determination of vinpocetine and its major active metabolite apovincaminic acid in rats by UPLC-MS/MS and its appli cation to the brain tissue distribution, J. Chromatogr. Sci. 56(3) (2018) 225–232; https://doi.org/10.1093/chromsci/bmx10429206914
- 3. P. Bönöczk, B. Gulyás, V. Adam-Vizi, A. Nemes, E. Kárpáti, B. Kiss, M. Kapás, C. Szántay, I. Koncz, T. Zelles and A. Vas, Role of sodium channel inhibition in neuroprotection: effect of vinpocetine, Brain Res. Bull. 53(3) (2000) 245–254; https://doi.org/10.1016/S0361-9230(00)00354-311113577
- 4. I. T. Lott, K. Osann, E. Doran and L. Nelson, Down syndrome and Alzheimer disease – Response to donepezil, Arch. Neurol. 59(7) (2002) 1133–1136; https://doi.org/10.1001/archneur.59.7.113312117361
- 5. G. Fabbrini, P. Barbanti, C. Aurilia, C. Pauletti, G. L. Lenzi and G. Meco, Donepezil in the treatment of hallucinations and delusions in Parkinson’s disease, Neurol. Sci. 23(1) (2002) 41–43; https://doi.org/10.1007/s10072020002212111620
- 6. H. Ogura, T. Kosasa, Y. Kuriya and Y. Yamanishi, Donepezil, a centrally acting acethylcholinesterase inhibitor, alleviates learning deficits in hypocholinergic models in rats, Methods Find. Exp. Clin. Pharmacol. 22(2) (2000) 89–95; https://doi.org/10.1358/mf.2000.22.2.79607010849891
- 7. D. R. Liston, J. A. Nielsen, A. Villalobos, D. Chapin, S. B. Jones, S. T. Hubbard, I. A. Shalaby, A. Ramirez, D. Nason and W. F. White, Pharmacology of selective acethylcholinesterase inhibitors: implications for use in Alzheimer’s disease, Eur. J. Pharmacol. 486(1) (2004) 9–17; https://doi.org/10.1016/j.ejphar.2003.11.08014751402
- 8. A. Khateb, J. Amman, J. M. Annoni and K. Diserens, Cognition-enhancing effects of donepezil in traumatic brain injury, Eur. Neurol. 54(1) (2005) 39–45; https://doi.org/10.1159/00008771816118495
- 9. M. Fujiki, H. Kobayashi, S. Uchida, R. Inoue and K. Ishii, Neuroprotective effect of donepezil, a nicotinic acethylcholine-receptor activator, on cerebral infarction in rats, Brain Res. 1043(1-2) (2005) 236–241; https://doi.org/10.1016/j.brainres.2005.02.06315862539
- 10. S. Kotani, T. Yamauchi, T. Teramoto and H. Ogura, Donepezil, an acethylcholinesterase inhibitor, enhances adult hippocampal neurogenesis, Chem. Biol. Interact 175(1-3) (2008) 227–230; https://doi.org/10.1016/j.cbi.2008.04.00418501884
- 11. K. J. Kwon, M. K. Kim, E. J. Lee, J. N. Kim, B. R. Choi, S. Y. Kim, K. S. Cho, J. S. Han, H. Y. Kim, C. Y. Shin and S. H. Han, Effects of donepezil, an acetylcholinesterase inhibitor, on neurogenesis in a rat model of vascular dementia, J. Neurol. Sci. 347(1-2) (2014) 66–77; https://doi.org/10.1016/j.jns.2014.09.02125266713
- 12. M. Pohanka, Inhibitors of acethylcholinesterase and butyrylcholinesterase meet immunity, Int. J. Mol. Sci. 15(6) (2014) 9809–9825; https://doi.org/10.3390/ijms15069809410012324893223
- 13. C. Scali, F. Casamenti, A. Bellucci, C. Costagli, B. Schmidt and G. Pepeu, Effect of subchronic administration of metrifonate, rivastigmine and donepezil on brain acetylcholine in aged F344 rats, J. Neural Transm. 109 (2002) 1067–1080; https://doi.org/10.1007/s00702020009012111444
- 14. G. A. Higgins, M. Enderlin, R. Fimbel, M. Haman, A. J. Grottick, M. Soriano, J. G. Richards, J. A. Kemp and R. Gill, Donepezil reverse a mnemonic deficit produced by scopolamine but not by perforant path lesion or transient cerebral ischemia, Eur. J. Neurosci. 15(11) (2002) 1827–1840; https://doi.org/10.1046/j.1460-9568.2002.02018.x12081663
- 15. W. J. Krall, J. J. Sramek and N. R. Cutler, Cholinesterase inhibitors: a therapeutic strategy for Alzheimer disease, Ann. Pharmacother. 33(4) (1999) 441–450; https://doi.org/10.1345/aph.1821110332536
- 16. A. Nordberg and A.-L. Svenson, Cholinesterase inhibitors in the treatment of Alzheimer’s disease - A comparison of tolerability and pharmacology, Drug Safety 19 (1998) 465–480; https://doi.org/10.2165/00002018-199819060-000049880090
- 17. C. Yuede, H. Dong and J. G. Csernansky, Anti-dementia drugs and hippocampal-dependent memory in rodents, Behav. Pharmacol. 18(5-6) (2007) 347–363; https://doi.org/10.1097/FBP.0b013e3282da278d266693417762506
- 18. M. J. H. J. Dekker, J. C. Bouvy, D. O’Rourke, R. Thompson, A. Makady, P. Jonsson and C. C. Gispende Wied, Alignment of European regulatory and health technology assessments: A review of licensed products for Alzheimer’s disease, Front. Med. (Lausanne) 6 (2019) Article ID 73 (9 pages); https://doi:10.3389/fmed.2019.0007310.3389/fmed.2019.00073651592731134200
- 19. V. J. DeNoble, S. J. Repetti, L. W. Gelpke, M. Wood and K. L. Keim, Vinpocetine: nootropic effects on scopolamine-induced and hypoxa-induced retrieval deficits of a step-through passive avoidance response in rats, Pharmacol. Biochem. Behav. 24(4) (1986) 1123–1128; https://doi.org/10.1016/0091-3057(86)90465-X3714768
- 20. A. Nemes, L. Czibula, C. Szántay, A. Gere, B. Kiss, J. Laszy, I. Gyertyán, Z. Szombathelyi and C. Szántay, Synthesis and evaluation of 2’-hydroxyethyl trans-apovincaminate derivatives as anti-oxidant and cognitive enhancer agents, J. Med. Chem. 51(3) (2008) 479–486; https://doi.org/10.1021/jm070618k18183943
- 21. J. Prickaerts, A. Sick, F. J. van der Staay, J. de Vente and A. Blokland, Dissociable effects of acethylcholinesterase inhibitors and phosphodiesterase type 5 inhibitors on object recognition memory: acquisition versus consolidation, Psychopharmacology 177 (2005) 381–390; https://doi.org/10.1007/s00213-004-1967-715630588
- 22. F. Jia, M. Kato, H. Dai, A. Xu, T. Okuda, E. Sakurai, N. Okamura, T. W. Lovenberg, A. Barbier, N. I. Carruthers, K. Linuma and K. Yanai, Effects of histamine H3 antagonists and donepezil on learning and mnemonic deficits induced by pentylentetrazol kindling in weanling mice, Neuro-pharmacology 50(4) (2006) 404–411; https://doi.org/10.1016/j.neuropharm.2005.09.01716310812
- 23. V. J. DeNoble, Vinpocetine enhances retrieval of a step-through passive avoidance response in rats, Pharmacol. Biochem. Behav. 26(1) (1987) 183–186; https://doi.org/10.1016/0091-3057(87)90552-13562490
- 24. D. Dimitrova and D. Getova-Spassova, Effects of galantamine and donepezil on active and passive avoidance tests in rats with induced hypoxia, Pharmacol. Sci. 101 (2006) 199–204; https://doi.org/10.1254/jphs.fpe05006x16861821
- 25. D. P. Getova and D. D. Dimitrova, Effects of GABAB receptor antagonists CGP63360, CGP76290A and CGP76291A on learning and memory processes in rats, Centr. Eur. J. Med. 2(3) (2007) 280–293; https://doi.org/10.2478/s11536-007-0033-3
- 26. L. V. Vasileva, D. P. Getova, N. D. Doncheva, A. S. Marchev and M. I. Georgiev, Beneficial effect of commercial Rhodiola extract in rats with scopolamine-induced memory impairment on active avoidance, J. Ethnopharmacol. 193 (2016) 586–591; https://doi.org/10.1016/j.jep.2016.10.01127720849
- 27. J. A. Quillfeldt, Behavioral Methods to Study Learning and Memory in Rats, in Rodent Model as Tools in Ethical Biomedical Research (Eds. M. L. Andersen and S. Tufik), Springer Cham, Heidelberg 2016, pp. 101–136.10.1007/978-3-319-11578-8_17
- 28. W. Froestl, A. Muhs and A. Pfeifer, Cognitive enhancers (nootropics). Part 1: drugs interacting with receptors, J. Alzheimers Dis. 32(4) (2012) 793–887; https://doi.org/10.3233/JAD-2012-12118622886028
- 29. N. A. Suliman, C. N. Mat Taib, M. A. Mohd Moklas, M. I. Adenan, M. T. Hidayat Baharuldin, R. Basir, Establishing natural nootropics: Recent molecular enhancement influenced by natural noo-tropic, Evid. Based Complement. Alternat. Med. 2016 (2016) Article ID 4391375 (12 pages); https://doi.org/10.1155/2016/4391375502147927656235
- 30. J. Jakubík, L. Bačáková, E. E. El-Fakahany and S. Tuček, Positive cooperativity of acetylcholine and other agonists with allosteric ligands on muscarinic acetylcholine receptors, Mol. Pharmacol. 52(1) (1997) 172–179; https://doi.org/https://doi.org/10.1124/mol.52.1.17210.1124/mol.52.1.1729224827
- 31. S. Deiana, B. Platt and G. Riedel, The cholinergic system and spatial learning, Behav. Brain Res. 221(2) (2011) 389–411; https://doi.org/10.1016/j.bbr.2010.11.03621108971
- 32. J. Jia, C. Wei, W. Chen, L. Jia, A. Zhow, F. Wang, Y. Tang and L. Xu, Safety and efficacy of donepezil 10 mg/day in patients with mild to moderate Alzheimer’s disease, J. Alzheimers Dis. 74(1) (2020) 199–211; https://doi.org/10.3233/JAD-19094031985467
- 33. S. A. Jacobson and M. N. Sabbagh, Donepezil: potential neuroprotective and disease-modifying effects, Expert Opin. Drug Metab. Toxicol. 4(10) (2008) 1363–1369; https://doi.org/10.1517/17425255.4.10.136318798705
- 34. H. G. Kim, M. Moon, J. G. Choi, G. Park, A.-J. Kim, J. Hur, K.-T. Lee and M. S. Oh, Donepezil inhibits the amyloid-beta oligomer-induced microglial activation in vitro and in vivo, Neurotoxicology 40 (2014) 23–32; https://doi.org/10.1016/j.neuro.2013.10.00424189446
- 35. S. J. Colloby, P. J. Nathan, I. G. McKeith, G. Bakker, J. T. O’Brien, J.-P. Taylor, Cholinergic muscarinic M1/M4 receptor networks in dementia with Lewy bodies, Brain Commun. 2(2) (2020) Article ID fcaa098 (12 pages); https://doi.org/10.1093/braincomms/fcaa098747569432954342
- 36. S. A. Wazea, W. Wadie, A. K. Bahgat, H. S. El-Abhar, Galantamine anti-colitic effect: Role of alpha-7 nicotinic acetylcholine receptor in modulating Jak/STAT3, NF-κB/HMGB1/RAGE and p-AKT/Bcl-2 pathways. Sci. Rep. 8 (2018) Article ID 5110 (10 pages); https://doi.org/10.1038/s41598-018-23359-6586517829572553