Have a personal or library account? Click to login
Ampelopsin induces MDA-MB-231 cell cycle arrest through cyclin B1-mediated PI3K/AKT/mTOR pathway in vitro and in vivo Cover

Ampelopsin induces MDA-MB-231 cell cycle arrest through cyclin B1-mediated PI3K/AKT/mTOR pathway in vitro and in vivo

Open Access
|Jan 2023

References

  1. 1. M. S. Kim, C. W. Lee, J. H. Kim, J. C. Lee and W. G. An, Extract of rhus verniciflua stokes induces p53-mediated apoptosis in MCF-7 breast cancer cells, Evid. Based Complement. Alternat. Med. 2019 (2019) Article ID 9407340 (10 pages); https://doi.org/10.1155/2019/9407340638342730881477
  2. 2. H. Sung, J. Ferlay, R. L. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal and F. Bray, Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA Cancer J. Clin. 71(3) (2021) 209–249; https://doi.org/10.3322/caac.2166033538338
  3. 3. R. Venkatadri, T. Muni, A. K. Iyer, J. S. Yakisich and N. Azad, Role of apoptosis-related miRNAs in resveratrol-induced breast cancer cell death, Cell Death Dis. 7 (2016) e2104; (12 pages) https://doi.org/10.1038/cddis.2016.6539919426890143
  4. 4. C. A. Dehelean, I. Marcovici, C. Soica, M. Mioc, D. Coricovac, S. Iurciuc, O. M. Cretu and I. Pinzaru, Plant-derived anticancer compounds as new perspectives in drug discovery and alternative therapy, Molecules 26 (2021) Article ID 1109 (29 pages); https://doi.org/10.3390/molecules26041109792218033669817
  5. 5. V. Singh, K. Kumar, D. Purohit, R. Verma, P. Pandey, S. Bhatia, V. Malik, V. Mittal, M. H. Rahman, G. M. Albadrani, M. W. Arafah, F. M. El-Demerdash, M. F. Akhtar, A. Saleem, M. Kamel, A. Najda, M. M. Abdel-Daim and D. Kaushik, Exploration of therapeutic applicability and different signaling mechanism of various phytopharmacological agents for treatment of breast cancer, Biomed. Pharmacother. 139 (2021) Article ID 111584 (19 pages); https://doi.org/10.1016/j.biopha.2021.11158434243623
  6. 6. V. M. Dan, R. S. Raveendran and S. Baby, Resistance to intervention: paclitaxel in breast cancer, Mini Rev. Med. Chem. 21 (2021) 1237–1268; https://doi.org/10.2174/138955752099920121423442133319669
  7. 7. S. Qi, Y. Xin, Y. Guo, Y. Diao, X. Kou, L. Luo and Z. Yin, Ampelopsin reduces endotoxic inflammation via repressing ROS-mediated activation of PI3K/Akt/NF-κB signaling pathways, Int. Immunopharmacol. 12(1) (2012) 278–287; https://doi.org/10.1016/j.intimp.2011.12.00122193240
  8. 8. V. N. Truong, Y. T. Nguyen and S. K. Cho, Ampelopsin suppresses stem cell properties accompanied by attenuation of oxidative phosphorylation in chemo- and radio-resistant MDA-MB-231 breast cancer cells, Pharmaceuticals (Basel) 14 (2021) Article ID 794 (17 pages); https://doi.org/10.3390/ph14080794840066534451892
  9. 9. X. Kou, J. Fan and N. Chen, Potential molecular targets of ampelopsin in prevention and treatment of cancers, Anticancer Agents Med. Chem. 17(12) (2017) 1610–1616; https://doi.org/10.2174/187152140966617041213052928403777
  10. 10. H. Chang, X. Peng, Q. Bai, Y. Zhou, X. Yu, Q. Zhang, J. Zhu and M. Mi, Ampelopsin suppresses breast carcinogenesis by inhibiting the mTOR signalling pathway, Carcinogenesis 35(8) (2014) 1847–1854; https://doi.org/10.1093/carcin/bgu11824861637
  11. 11. T. Otto and P. Sicinski, Cell cycle proteins as promising targets in cancer therapy, Nat. Rev. Cancer 17 (2017) 93–115; https://doi.org/10.1038/nrc.2016.138534593328127048
  12. 12. J. C. Bendell, J. Rodon, H. A. Burris, M. de Jonge, J. Verweij, D. Birle, D. Demanse, S. S. De Buck, Q. C. Ru, M. Peters, M. Goldbrunner and J. Baselga, Phase I, dose-escalation study of BKM120, an oral pan-Class I PI3K inhibitor, in patients with advanced solid tumors, J. Clin. Oncol. 30(3) (2012) 282–290; https://doi.org/10.1200/JCO.2011.36.136022162589
  13. 13. D. Gong and J. E. Jr. Ferrell, The roles of cyclin A2, B1 and B2 in early and late mitotic events, Mol. Biol. Cell 21(18) (2010) 3149–3161; https://doi.org/10.1091/mbc.E10-05-0393293838120660152
  14. 14. F. Fei, J. Qu, K. Liu, C. Li, X. Wang, Y. Li and S. Zhang, The subcellular location of cyclin B1 and CDC25 associated with the formation of polyploid giant cancer cells and their clinicopathological significance, Lab. Invest. 99 (2019) 483–498; https://doi.org/10.1038/s41374-018-0157-x30487595
  15. 15. T. K. Fung, H. T. Ma and R. Y. Poon, Specialized roles of the two mitotic cyclins in somatic cells: cyclin A as an activator of M phase-promoting factor, Mol. Biol. Cell 18(5) (2007) 1861–1873; https://doi.org/10.1091/mbc.e06-12-1092185502317344473
  16. 16. Y. Lu, G. Yang, Y. Xiao, T. Zhang, F. Su, R. Chang, X. Ling and Y. Bai, Upregulated cyclins may be novel genes for triple-negative breast cancer based on bioinformatic analysis, Breast Cancer 27 (2020) 903–911; https://doi.org/10.1007/s12282-020-01086-z32338339
  17. 17. B. Li, H. B. Zhu, G. D. Song, J. H. Cheng, C. Z. Li, Y. Z. Zhang and P. Zhao, Regulating the CCNB1 gene can affect cell proliferation and apoptosis in pituitary adenomas and activate epithelial-tomesenchymal transition, Oncol. Lett. 18(5) (2019) 4651–4658; https://doi.org/10.3892/ol.2019.10847678151831611974
  18. 18. J. A. Engelman, J. Luo and L. C. Cantley, The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism, Nat. Rev. Genet. 7 (2006) 606–619; https://doi.org/10.1038/nrg187916847462
  19. 19. A. Ghoneum and N. Said, PI3K-AKT-mTOR and NFκB pathways in ovarian cancer: implications for targeted therapeutics, Cancers 11 (2019) Article ID 949 (26 pages); https://doi.org/10.3390/cancers11070949667909531284467
  20. 20. B. Zhang, Z. Zhao, X. Meng, H. Chen, G. Fu and K. Xie, Hydrogen ameliorates oxidative stress via PI3K-Akt signaling pathway in UVB-induced HaCaT cells, Int. J. Mol. Med. 41(6) (2018) 3653–3661; https://doi.org/10.3892/ijmm.2018.355029532858
  21. 21. E. Paplomata and R. O’Regan, The PI3K/AKT/mTOR pathway in breast cancer: targets, trials and biomarkers, Ther. Adv. Med. Oncol. 6(4) (2014) 154–166; https://doi.org/10.1177/1758834014530023410771225057302
  22. 22. D. Miricescu, A. Totan, I. I. Stanescu-Spinu, S. C. Badoiu, C. Stefani and M. Greabu, PI3K/AKT/mTOR signaling pathway in breast cancer: from molecular landscape to clinical aspects, Int. J. Mol. Sci. 22(1) (2020) Article ID 173 (24 pages); https://doi.org/10.3390/ijms22010173779601733375317
  23. 23. S. Aggarwal, S. John, L. Sapra, S. C. Sharma and S. N. Das, Targeted disruption of PI3K/Akt/mTOR signaling pathway, via PI3K inhibitors, promotes growth inhibitory effects in oral cancer cells, Cancer Chemother. Pharmacol. 83 (2019) 451–461; https://doi.org/10.1007/s00280-018-3746-x30519710
  24. 24. A. Narayanankutty, Phytochemicals as PI3K/Akt/mTOR inhibitors and their role in breast cancer treatment, Recent Pat. Anticancer Drug Discov. 15(3) (2020) 188–199; https://doi.org/10.2174/157489281566620091016464132914720
  25. 25. J. H. Lin, P. C. Ting, W. S. Lee, H. W. Chiu, C. A. Chien, C. H. Liu, L. Y. Sun and K. T. Yang, Palmitic acid methyl ester induces G2/M arrest in human bone marrow-derived mesenchymal stem cells via the p53/p21 pathway, Stem Cells Int. 2019 (2019) Article ID 7606238 (16 pages); https://doi.org/10.1155/2019/7606238691501231885624
  26. 26. X. Yin, R. Zhang, C. Feng, J. Zhang, D. Liu, K. Xu, X. Wang, S. Zhang, Z. Li, X. Liu and H. Ma, Diallyl disulfide induces G2/M arrest and promotes apoptosis through the p53/p21 and MEK-ERK pathways in human esophageal squamous cell carcinoma, Oncol. Rep. 32(4) (2014) 1748–1756; https://doi.org/10.3892/or.2014.336125175641
  27. 27. M. Saleem, J. Asif, M. Asif and U. Saleem, Amygdalin from apricot kernels induces apoptosis and causes cell cycle arrest in cancer cells: an updated review, Anticancer Agents Med. Chem. 18(12) (2018) 1650–1655; https://doi.org/10.2174/187152061866618010516113629308747
  28. 28. Y. Li, Y. Zhou, M. Wang, X. Lin, Y. Zhang, I. Laurent, Y. Zhong and J. Li, Ampelopsin inhibits breast cancer cell growth through mitochondrial apoptosis pathway, Biol. Pharm. Bull. 44(11) (2021) 1738–1745; https://doi.org/10.1248/bpb.b21-0047034470980
  29. 29. M. B. Kastan and J. Bartek, Cell-cycle checkpoints and cancer, Nature 432 (2004) 316–323; https://doi.org/10.1038/nature0309715549093
  30. 30. Y. Sun, Y. Liu, X. Ma and H. Hu, The influence of cell cycle regulation on chemotherapy, Int. J. Mol. Sci. 22(13) (2021) Article ID 6923 (25 pages); https://doi.org/10.3390/ijms22136923826772734203270
  31. 31. V. M. Dirsch, D. S. Antlsperger, H. Hentze and A. M. Vollmar, Ajoene, an experimental anti-leukemic drug: mechanism of cell death, Leukemia 16 (2002) 74–83; https://doi.org/10.1038/sj.leu.240233711840266
  32. 32. S. Wullschleger, R. Loewith and M. N. Hall, TOR signaling in growth and metabolism, Cell 124(3) (2006) 471–484; https://doi.org/10.1016/j.cell.2006.01.01616469695
  33. 33. J. H. Kim, C. Xu, Y. S. Keum, B. Reddy, A. Conney and A. N. Kong, Inhibition of EGFR signaling in human prostate cancer PC-3 cells by combination treatment with beta-phenylethyl isothiocya-nate and curcumin, Carcinogenesis 27(3) (2006) 475–482; https://doi.org/10.1093/carcin/bgi27216299382
  34. 34. R. Rong and X. Xijun, Erythropoietin pretreatment suppresses inflammation by activating the PI3K/Akt signaling pathway in myocardial ischemia-reperfusion injury, Exp. Ther. Med. 10(2) (2015) 413–418; https://doi.org/10.3892/etm.2015.2534450942326622330
  35. 35. G. Hoxhaj and B. D. Manning, The PI3K-AKT network at the interface of oncogenic signalling and cancer metabolismo, Nat. Rev. Cancer 20 (2020) 74–88; https://doi.org/10.1038/s41568-019-0216-7731431231686003
  36. 36. N. Lamm, S. Rogers and A. J. Cesare, The mTOR pathway: implications for DNA replication, Prog. Biophys. Mol. Biol. 147 (2019) 17–25; https://doi.org/10.1016/j.pbiomolbio.2019.04.00230991055
  37. 37. L. Chen and H. Wang, Nicotine promotes human papillomavirus (HPV)-immortalized cervical epithelial cells (H8) proliferation by activating RPS27a-Mdm2-P53 pathway in vitro, Toxicol. Sci. 167(2) (2019) 408–418; https://doi.org/10.1093/toxsci/kfy24630272249
  38. 38. L. Liu, W. Michowski, A. Kolodziejczyk and P. Sicinski, The cell cycle in stem cell proliferation, pluripotency and differentiation, Nat. Cell Biol. 21 (2019) 1060–1067; https://doi.org/10.1038/s41556-019-0384-4706570731481793
  39. 39. H. K. Matthews, C. Bertoli and R. de Bruin, Cell cycle control in cancer, Nat. Rev. Mol. Cell Biol. 23 (2022) 74–88; https://doi.org/10.1038/s41580-021-00404-334508254
  40. 40. B. Xie, S. Wang, N. Jiang and J. J. Li, Cyclin B1/CDK1-regulated mitochondrial bioenergetics in cell cycle progression and tumor resistance, Cancer Lett. 443 (2019) 56–66; https://doi.org/10.1016/j.canlet.2018.11.019675906130481564
  41. 41. W. Lin, J. Xie, N. Xu, L. Huang, A. Xu, H. Li, C. Li, Y. Gao, M. Watanabe, C. Liu and P. Huang, Glaucocalyxin A induces G2/M cell cycle arrest and apoptosis through the PI3K/Akt pathway in human bladder cancer cells, Int. J. Biol. Sci. 14(4) (2018) 418–426; https://doi.org/10.7150/ijbs.23602593047429725263
  42. 42. M. Wasner, K. Tschöp, K. Spiesbach, U. Haugwitz, C. Johne, J. Mössner, R. Mantovani and K. Engeland, Cyclin B1 transcription is enhanced by the p300 coactivator and regulated during the cell cycle by a CHR-dependent repression mechanism, FEBS Lett. 536(1–3) (2003) 66–70; https://doi.org/10.1016/s0014-5793(03)00028-012586340
  43. 43. X. Q. Wang, C. M. Lo, L. Chen, E. S. Ngan, A. Xu and R. Y. Poon, CDK1-PDK1-PI3K/Akt signaling pathway regulates embryonic and induced pluripotency, Cell Death Differ. 24 (2017) 38–48; https://doi.org/10.1038/cdd.2016.84526050527636107
DOI: https://doi.org/10.2478/acph-2023-0005 | Journal eISSN: 1846-9558 | Journal ISSN: 1330-0075
Language: English
Page range: 75 - 90
Accepted on: Jul 31, 2022
|
Published on: Jan 24, 2023
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year
Related subjects:

© 2023 Minjun Meng, Qiaolu Yang, Zhong Ouyang, Qingmo Yang, Xinyi Wu, Yufan Huang, Yonghui Su, Shuanglong Chen, Wenlin Chen, published by Croatian Pharmaceutical Society
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.