References
- 1. C. Ayoub Moubareck and D. Hammoudi Halat, Insights into Acinetobacter baumannii: a review of microbiological, virulence, and resistance traits in a threatening nosocomial pathogen, Antibiotics (Basel) 9(3) (2020) 119–121; https://doi.org/10.3390/antibiotics9030119
- 2. F. C. Morris, C. Dexter, X. Kostoulias, M. I. Uddin and A. Y. Peleg, The mechanisms of disease caused by Acinetobacter baumannii, Front. Microbiol. 10 (2019) Article ID 1601 (20 pages); https://doi.org/10.3389/fmicb.2019.01601
- 3. M. G. Garcia-Patino, R. Garcia-Contreras and P. Licona-Limon, The immune response against Acinetobacter baumannii, an emerging pathogen in nosocomial infections, Front. Immunol. 8 (2017) Article ID 441 (10 pages); https://doi.org/10.3389/fimmu.2017.00441
- 4. J. Tan, C. McKenzie, M. Potamitis, A. N. Thorburrn, C. R. Mackay and L. Macia, The role of short-chain fatty acids in health and disease, Adv. Immunol. 121 (2014) 91–119; https://doi.org/10.1016/B978-0-12-800100-4.00003-9
- 5. M. Jardou and R. Lawson, Supportive therapy during COVID-19: The proposed mechanism of short-chain fatty acids to prevent cytokine storm and multi-organ failure, Med. Hypotheses 154 (2021) Article ID 110661 (7 pages); https://doi.org/10.1016/j.mehy.2021.110661
- 6. D. Parada Venegas, M. K. de la Fuente, G. Landskron, M. J. Gonzalez, R. Quera, G. Dijkstra, H. J. M. Harmsen, K. N. Faber and M. A. Hermoso, Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases, Front. Immunol. 10 (2019) Article ID 277 (16 pages); https://doi.org/10.3389/fimmu.2019.00277
- 7. N. Li, X. X. Liu, M. Hong, X. Z. Huang, H. Chen, J. H. Xu, C. Wang, Y. X. Zhang, J. X. Zhong, H. Nie and Q. Gong, Sodium butyrate alleviates LPS-induced acute lung injury in mice via inhibiting HMGB1 release, Int. Immunopharmacol. 56 (2018) 242–248; https://doi.org/10.1016/j.intimp.2018.01.017
- 8. A. Elce, F. Amato, F. Zarrilli, A. Calignano, R. Troncone, G. Castaldo and R. B. Canani, Butyrate modulating effects on pro-inflammatory pathways in human intestinal epithelial cells, Benef. Microbes 8(5) (2017) 841–847; https://doi.org/10.3920/BM2016.0197
- 9. H. Lührs, T. Kudlich, M. Neumann, J. Schauber, R. Melcher, A. Gostner, W. Scheppach and T. P. Menzel, Butyrate-enhanced TNF alpha-induced apoptosis is associated with inhibition of NF-kappaB, Anticancer. Res. 22(3) (2002) 1561–1568; https://pubmed.ncbi.nlm.nih.gov/12168837/
- 10. B. G. Heerdt, M. A. Houston and L. H. Augenlicht, Potentiation by specific short-chain fatty acids of differentiation and apoptosis in human colonic carcinoma cell lines, Cancer Res. 54(12) (1994) 3288–3293; https://pubmed.ncbi.nlm.nih.gov/8205551/
- 11. J. P. Segain, D. Raingeard de la Blétière, A. Bourreille, V. Leray, N. Gervois, C. Rosales, L. Ferrier, C. Bonnet, H. M. Blottière, J. P. Galmiche, Butyrate inhibits inflammatory responses through NFkappaB inhibition: implications for Crohn’s disease, Gut 47 (2000) 397–403; https://doi.org/10.1136/gut.47.3.397
- 12. D. Zheng, T. Liwinski and E. Elinav, Interaction between microbiota and immunity in health and disease, Cell Res. 30 (2020) 492–506; https://doi.org/10.1038/s41422-020-0332-7
- 13. R. Corrêa-Oliveira, J. L. Fachi, A. Vieira, F. T. Sato and M. A. Vinolo, Regulation of immune cell function by short-chain fatty acids, Clin. Transl. Immunol. 5 (2016) Article ID e73 (8 pages); https://doi.org/10.1038/cti.2016.17
- 14. U. Böcker, T. Nebe, F. Herweck, L. Holt, A. Panja, C. Jobin, S. Rossol, R. Sartor B and M. V. Singer, Butyrate modulates intestinal epithelial cell-mediated neutrophil migration, Clin. Exp. Immunol. 131(1) (2003) 53–60; https://doi.org/10.1046/j.1365-2249.2003.02056.x
- 15. S. Mitra, M. Exline, F. Habyarimana, M. A. Gavrilin, P. J. Baker, S. L. Masters, M. D. Wewers and A. Sarkar, Microparticulate caspase 1 regulates gasdermin D and pulmonary vascular endothelial cell injury, Am. J. Respir. Cell Mol. Biol. 59(1) (2018) 56–64; https://doi.org/10.1165/rcmb.2017-0393OC
- 16. L. Qu, C. Chen, W. He, Y. Chen, Y. Li, Y. Wen, S. Zhou, Y. Jiang, X. Yang, R. Zhang and L. Shen, Glycyrrhizic acid ameliorates LPS-induced acute lung injury by regulating autophagy through the PI3K/AKT/mTOR pathway, Am. J. Transl. Res. 11(4) (2019) 2042–2055; https://pubmed.ncbi.nlm.nih.gov/31105816/
- 17. Z. Zhong, E. Sanchez-Lopez and M. Karin, Autophagy, NLRP3 inflammasome and auto-inflammatory/immune diseases, Clin. Exp. Rheumatol. 34(4 Suppl 98) (2016) 12–16; https://pubmed.ncbi.nlm.nih.gov/27586797/34
- 18. J. Dai, X. Zhang, L. Li, H. Chen and Y. Chai, Autophagy inhibition contributes to ROS-producing NLRP3-dependent inflammasome activation and cytokine secretion in high glucose-induced macrophages, Cell Physiol. Biochem. 43(1) (2017) 247–256; https://doi.org/10.1159/000480367
- 19. J. H. Ko, S. O. Yoon, H. J. Lee, J. Y. Oh, Rapamycin regulates macrophage activation by inhibiting NLRP3 inflammasome-p38 MAPK-NFkappaB pathways in autophagy- and p62-dependent manners, Oncotarget 8 (2017) 40817–40831; https://doi.org/10.18632/oncotarget.17256
- 20. Q. Liu, D. Zhang, D. Hu, X. Zhou and Y. Zhou, The role of mitochondria in NLRP3 inflammasome activation, Mol. Immunol. 103 (2018) 115–124; https://doi.org/10.1016/j.molimm.2018.09.010
- 21. Z. Yan, J. Yang, R. Hu, X. Hu and K. Chen, Acinetobacter baumannii infection and IL-17 mediated immunity, Mediators Inflamm. 2016 (2016) Article ID 9834020 (6 pages); https://doi.org/10.1155/2016/9834020
- 22. P. Mirmonsef, M. R. Zariffard, D. Gilbert, H. Makinde, A. L. Landay and G. T. Spear, Short-chain fatty acids induce pro-inflammatory cytokine production alone and in combination with toll-like receptor ligands, Am. J. Reprod. Immunol. 67 (2012) 391–400; https://doi.org/10.1111/j.1600-0897.2011.01089.x