Have a personal or library account? Click to login
Relaxin inhibits 177Lu-EDTMP associated cell death in osteosarcoma cells through notch-1 pathway Cover

Relaxin inhibits 177Lu-EDTMP associated cell death in osteosarcoma cells through notch-1 pathway

By: Junhua Xu,  Song Wan,  Wei Chen,  Yi Zhang and  Zhenzhong Ji  
Open Access
|Oct 2022

References

  1. 1. M. Kansara, M. W. Teng, M. J. Smyth and D. M. Thomas, Translational biology of osteosarcoma, Nat. Rev. Cancer. 14(11) (2014) 722–735; https://doi.org/10.1038/nrc3838
  2. 2. J. M. Jimenez-Andrade, W. G. Mantyh, A. P. Bloom, A. S. Ferng, C. P. Geffre and P. W. Mantyh, Bone cancer pain, Ann. N. Y. Acad. Sci. 1198 (2010) 173–181; https://doi.org/10.1111/j.1749-6632.2009.05429.x
  3. 3. Bone sarcomas: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up, Ann. Oncol. 23(7) (2014) 113–123; https://doi.org/10.1093/annonc/mdu256
  4. 4. L. Wang and G. B. Xue, Catalpol suppresses osteosarcoma cell proliferation through blocking epithelial-mesenchymal transition (EMT) and inducing apoptosis, Biochem Biophys. Res. Commun. 495(1) (2018) 27–34; https://doi.org/10.1016/j.bbrc.2017.10.054
  5. 5. S. A. Desai, A. Manjappa and P. Khulbe, Drug delivery nanocarriers and recent advances ventured to improve therapeutic efficacy against osteosarcoma: an overview, J. Egypt Natl. Canc. Inst. 33(1) (2021) Article ID 4 (14 pages); https://doi.org/10.1186/s43046-021-00059-3
  6. 6. I. McCarthy, The physiology of bone blood flow: a review, J. Bone Joint Surg. Am. 88(3) (2006) 4–9; https://doi.org/10.2106/JBJS.F.00890
  7. 7. O. D. Sherwood, Relaxin’s physiological roles and other diverse actions, Endocr. Rev. 25(2) (2004) 205–234; https://doi.org/10.1210/er.2003-0013
  8. 8. X. Wei, Y. Yang, Y. J. Jiang, J. M. Lei, J. W. Guo and H. Xiao, Relaxin ameliorates high glucose-induced cardiomyocyte hypertrophy and apoptosis via the Notch1 pathway, Exp. Ther. Med. 15(1) (2018) 691–698; https://doi.org/10.3892/etm.2017.5448
  9. 9. T. Thanasupawat, A. Glogowska, S. Nivedita-Krishnan, B. Wilson, T. Klonisch and S. Hombach-Klonisch, Emerging roles for the relaxin/RXFP1 system in cancer therapy, Mol. Cell Endocrinol. 487 (2019) 85–93; https://doi.org/10.1016/j.mce.2019.02.001
  10. 10. D. Bani, A. Pini and S. K. Yue, Relaxin, insulin and diabetes: an intriguing connection, Curr. Diabetes Rev. 8(5) (2012) 329–335; https://doi.org/10.2174/157339912802083487
  11. 11. A. A. Waza, Z. Hamid, S. A. Bhat, N. U. D. Shah, M. Bhat and B. Ganai, Relaxin protects cardiomyocytes against hypoxia-induced damage in in-vitro conditions: Involvement of Nrf2/HO-1 signaling pathway, Life Sci. 213 (2018) 25–31; https://doi.org/10.1016/j.lfs.2018.08.059
  12. 12. A. A. Waza, S. A. Bhat and Z. Hamid, Relaxin: A magical therapy for healthy heart, Int. J. Curr. Pharm. Res. 10 (2018) 1–2; http://doi.org/10.22159/ijcpr.2018v10i1.24405
  13. 13. S. Bruell, A. Sethi, N. Smith, D. J. Scott, M. A. Hossain, Q. P. Wu, Z. Y. Guo, E. J. Petrie, P. R. Gooley and R. A. D. Bathgate, Distinct activation modes of the Relaxin Family Peptide Receptor 2 in response to insulin-like peptide 3 and relaxin, Sci. Rep. 7(1) (2017) Article ID 3294 (12 pages); https://doi.org/10.1038/s41598-017-03638-4
  14. 14. Y. Radestock, C. Hoang-Vu and S. Hombach-Klonisch, Relaxin reduces xenograft tumour growth of human MDA-MB-231 breast cancer cells, Breast Cancer Res. 10(4) (2008) Article ID R71 (15 pages); https://doi.org/10.1186/bcr2136
  15. 15. V. B. Nair, C. S. Samuel, F. Separovic, M. A. Hossain and J. D. Wade, Human relaxin-2: historical perspectives and role in cancer biology, Amino Acids 43(3) (2012) 1131–1140; https://doi.org/10.1007/s00726-012-1375-y
  16. 16. A. Facciolli, A. Ferlin, L. Gianesello, A. Pepe and C. Foresta, Role of relaxin in human osteoclasto-genesis, Ann. N. Y. Acad. Sci. 1160(1) (2009) 221–225; https://doi.org/10.1111/j.1749-6632.2008.03788.x
  17. 17. A. Ferlin, A. Pepe, A. Facciolli, L. Gianesello and C. Foresta, Relaxin stimulates osteoclast differentiation and activation, Bone 46(2) (2010) 504–513 https://doi.org/10.1016/j.bone.2009.10.007
  18. 18. T. G. Chan, E. O’Neill, C. Habjan and B, Cornelissen, Combination strategies to improve targeted radionuclide therapy, J.Nucl. Med. 61(11) (2020) 1544–1552; https://doi.org/10.2967/jnumed.120.248062
  19. 19. J. Yuan, C. Liu, X. Liu, Y. Wang, D. Kuai, G. Zhang and J. J. Zaknun, Efficacy and safety of 177Lu-EDTMP in bone metastatic pain palliation in breast cancer and hormone refractory prostate cancer: a phase II study, Clin. Nucl. Med. 38(2) (2013) 88–92; https://doi.org/10.1097/RLU.0b013e318279bf4d
  20. 20. S. Chakraborty, T. Das, S. Banerjee, L. Balogh, P. R. Chaudhari, H. D. Sarma, A. Polyak, D. Mathe, M. Venkatesh, G. Janoki and M. R. Pillai, 177Lu-EDTMP: a viable bone pain palliative in skeletal metastasis, Cancer Biother. Radiopharm. 23(2) (2008) 202–213; https://doi.org/10.1089/cbr.2007.374
  21. 21. C. Kumar, A. Korde, K.V. Kumari, T. Das and G. Samuel, Cellular toxicity and apoptosis studies in osteocarcinoma cells, a comparison of 177Lu-EDTMP and Lu-EDTMP, Curr. Radiopharm. 6(3) (2013) 146–151; https://doi.org/10.2174/18744710113069990021
  22. 22. C. Kumar, R. Sharma, K. Vats, M. B Mallia, T. Das, H. Sarma and A. Dash, Comparison of the efficacy of 177Lu-EDTMP, 177Lu-DOTMP and 188Re-HEDP towards bone osteosarcoma: an in vitro study, J. Radioanal. Nucl. Chem. 319(1) (2019) 51–59; https://doi.org/10.1007/s10967-018-6283-5
  23. 23. A. A. Waza, K. Andrabi and M. Ul Hussain, Adenosine-triphosphate-sensitive K+ channel (Kir6.1): a novel phosphospecific interaction partner of connexin 43 (Cx43), Exp. Cell Res. 318(20) (2012) 2559–2566; https://doi.org/10.1016/j.yexcr.2012.08.004
  24. 24. S. Elmore, Apoptosis: a review of programmed cell death, Toxicol. Pathol. 35(4) (2007) 495–516; https://doi.org/10.1080/01926230701320337
  25. 25. K. J. Campbell and S. W. G. Tait, Targeting BCL-2 regulated apoptosis in cancer, Open Biol. 8(5) (2018) Article ID 18000 (11 pages); https://doi.org/10.1098/rsob.180002
  26. 26. S. Pattingre, A. Tassa, X. Qu, R. Garuti, X. H. Liang, N. Mizushima, M. Packer, M. D. Schneider and B. Levine, Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy, Cell 122(6) (2005) 927–939; https://doi.org/10.1016/j.cell.2005.07.002
  27. 27. G. V. Chaitanya, A. J. Steven and P. P. Babu, PARP-1 cleavage fragments: signatures of cell-death proteases in neurodegeneration, Cell Commun. Signal. 8 (2010) Article ID 31 (11 pages); https://doi.org/10.1186/1478-811X-8-31
  28. 28. E. M. Carrington, Y. Zhan, J. L. Brady, J. G. Zhang, R. M. Sutherland, N. S. Anstee, R. L. Schenk, I. B. Vikstrom, R. B. Delconte, D. Segal, N. D. Huntington, P. Bouillet, D. M. Tarlinton, D. C. Huang, A. Strasser, S. Cory, M. J. Herold and A. M. Lew, Anti-apoptotic proteins BCL-2, MCL-1 and A1 summate collectively to maintain survival of immune cell populations both in vitro and in vivo, Cell Death Differ. 24(5) (2017) 878–888; https://doi.org/10.1038/cdd.2017.30
  29. 29. M. Cargnello and P. P. Roux, Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases, Microbiol. Mol. Biol. Rev. 75(1) (2011) 50–83; https://doi.org/10.1128/MMBR.00031-10
  30. 30. S. Karunakaran, U. Saeed, M. Mishra, R. K. Valli, S. D. Joshi, D. P. Meka, P. Seth and V. Ravindranath, Selective activation of p38 mitogen-activated protein kinase in dopaminergic neurons of substantia nigra leads to nuclear translocation of p53 in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mice, J. Neurosci. 28(47) (2008) 12500–12509; https://doi.org/10.1523/JNEUROSCI.4511-08.2008
  31. 31. Y. Wang, R. Cui, X. Zhang, Y. Qiao, X. Liu, Y. Chang, Y. Yu, F. Sun and J. Wang, SIRT1 increases YAP- and MKK3-dependent p38 phosphorylation in mouse liver and human hepatocellular carcinoma, Oncotarget 7(10) (2016) 11284–11298; https://doi.org/10.18632/oncotarget.7022
  32. 32. H. K. Koul, M. Pal and S. Koul, Role of p38 MAP kinase signal transduction in solid tumors, Genes Cancer 4(9–10) (2013) 342–359; https://doi.org/10.1177/1947601913507951
  33. 33. F. Engin, T. Bertin, O. Ma, M. M. Jiang, L. Wang, R. E. Sutton, L. A. Donehower and B. Lee, Notch signaling contributes to the pathogenesis of human osteosarcomas, Hum. Mol. Genet. 18(8) (2009) 1464–1470; https://doi.org/10.1093/hmg/ddp057
  34. 34. M. Tanaka, T. Setoguchi, M. Hirotsu, H. Gao, H. Sasaki, Y. Matsunoshita and S. Komiya, Inhibition of Notch pathway prevents osteosarcoma growth by cell cycle regulation, Br. J. Cancer 100(12) (2009) 1957–1965; https://doi.org/10.1038/sj.bjc.6605060
  35. 35. J. S. Mo, J. H. Yoon, E. J. Ann, J. S. Ahn, H. J. Baek, H. J. Lee, S. H. Kim, Y. D. Kim, M. Y. Kim and H. S. Park, Notch1 modulates oxidative stress induced cell death through suppression of apoptosis signal-regulating kinase 1, Proc. Natl. Acad. Sci. USA 110(17) (2013) 6865–6870; https://doi.org/10.1073/pnas.1209078110
  36. 36. G. Boccalini, C. Sassoli, L. Formigli, D. Bani and S. Nistri, Relaxin protects cardiac muscle cells from hypoxia/reoxygenation injury: Involvement of the Notch-1 pathway, FASEB J, 29(1) (2015) 239–249; https://doi.org/10.1096/fj.14-254854
  37. 37. Y. Y. Tan, J. D. Wade, G. W. Tregear and R. J. Summers, Quantitative autoradiographic studies of relaxin binding in rat atria, uterus and cerebral cortex: Characterization and effects of oestrogen treatment, Br. J. Pharmacol. 127(1) (1999) 91–98; https://doi.org/10.1038/sj.bjp.0702517
DOI: https://doi.org/10.2478/acph-2022-0032 | Journal eISSN: 1846-9558 | Journal ISSN: 1330-0075
Language: English
Page range: 575 - 585
Accepted on: Feb 20, 2022
Published on: Oct 18, 2022
Published by: Croatian Pharmaceutical Society
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year
Related subjects:

© 2022 Junhua Xu, Song Wan, Wei Chen, Yi Zhang, Zhenzhong Ji, published by Croatian Pharmaceutical Society
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.