Have a personal or library account? Click to login
Optimized D-α-tocopherol polyethylene glycol succinate/phospholipid self-assembled mixed micelles: A promising lipid-based nanoplatform for augmenting the antifungal activity of fluconazole Cover

Optimized D-α-tocopherol polyethylene glycol succinate/phospholipid self-assembled mixed micelles: A promising lipid-based nanoplatform for augmenting the antifungal activity of fluconazole

Open Access
|Oct 2022

References

  1. 1. B. Healy and R. Barnes, Topical and oral treatments for fungal skin infections, Prescriber 17(7) (2006) 30–43; https://doi.org/10.1002/psb.360
  2. 2. R. Coppola, S. Zanframundo, M. V. Rinati, M. Carbotti, A. Graziano, G. Galati, L. De Florio and V. Panasiti, Rhodotorula mucilaginosa skin infection in a patient treated with sorafenib, J. Eur. Acad. Dermatol. Venereol. 29(5) (2015) 1028–1029; https://doi.org/10.1111/jdv.12455
  3. 3. E. Palese, M. Nudo, G. Zino, V. Devirgiliis, M. Carbotti, E. Cinelli, D. M. Rodio, A. Bressan, C. Prezioso, C. Ambrosi, D. Scribano, V. Pietropaolo, D. Fioriti and V. Panasiti, Cutaneous candidiasis caused by Candida albicans in a young non-immunosuppressed patient: an unusual presentation, Int. J. Immunopathol. Pharmacol. 32 (2018) 1–4; https://doi.org/10.1177/2058738418781368
  4. 4. S. Bhattacharya, S. Sae-Tia and B. C. Fries, Candidiasis and mechanisms of antifungal resistance, Antibiotics 9(6) (2020) Article ID 312 (19 pages); https://doi.org/10.3390/antibiotics9060312
  5. 5. M. V. Martin, The use of fluconazole and itraconazole in the treatment of Candida albicans infections: a review, J. Antimicrob. Chemother. 44(4) (1999) 429–437; https://doi.org/10.1093/jac/44.4.429
  6. 6. P. Suchil, F. Montero Gei, M. Robles, A. Perera-Ramirez, O. Welsh and O. Male, Once-weekly oral doses of fluconazole 150 mg in the treatment of tinea corporis/cruris and cutaneous candidiasis, Clin. Exp. Dermatol. 17(6) (1992) 397–401; https://doi.org/10.1111/j.1365-2230.1992.tb00246.x
  7. 7. B. Darwesh, H. M. Aldawsari and S. M. Badr-Eldin, Optimized chitosan/anion polyelectrolyte complex based inserts for vaginal delivery of fluconazole: In vitro/in vivo evaluation, Pharmaceutics 10(4) (2018) Article ID 227 (16 pages); https://doi.org/10.3390/pharmaceutics10040227
  8. 8. H. M. Ellaithy and K. M. F. El-Shaboury, The development of Cutina lipogels and gel microemulsion for topical administration of fluconazole, AAPS PharmSciTech 3 (2002) 77–85; https://doi.org/10.1208/pt030435
  9. 9. M. Gupta, S. Tiwari and S. P. Vyas, Influence of various lipid core on characteristics of SLNs designed for topical delivery of fluconazole against cutaneous candidiasis, Pharm. Dev. Technol. 18(3) (2013) 550–559; https://doi.org/10.3109/10837450.2011.598161
  10. 10. V. Prajapati, A. Jain, R. Jain, S. Sahu and D. V. Kohli, Treatment of cutaneous candidiasis through fluconazole encapsulated cubosomes, Drug Deliv. Transl. Res. 4 (2014) 400–408; https://doi.org/10.1007/s13346-014-0202-2
  11. 11. T. O. McDonald, M. Siccardi, D. Moss, N. Liptrott, M. Giardiello, S. Rannard and A. Owen, The Application of Nanotechnology to Drug Delivery in Medicine, in Nanoengineering Global Approaches to Health and Safety Issues, Elsevier 2015, pp. 173–223.
  12. 12. W. Weng, Q. Wang, C. Wei, M. Adu-Frimpong, E. Toreniyazov, H. Ji, J. Yu and X. Xu, Mixed micelles for enhanced oral bioavailability and hypolipidemic effect of liquiritin: preparation, in vitro and in vivo evaluation, Drug Dev. Ind. Pharm. 47(2) (2021) 308–318; https://doi.org/10.1080/03639045.2021.1879839
  13. 13. O. A. A. Ahmed, K. M. El-Say, B. M. Aljaeid, S. M. Badr-Eldin and T. A. Ahmed, Optimized vinpocetine-loaded vitamin E D-α-tocopherol polyethylene glycol 1000 succinate-alpha lipoic acid micelles as a potential transdermal drug delivery system: in vitro and ex vivo studies, Int. J. Nanomedicine 2018(14) 33–43; https://doi.org/10.2147/IJN.S187470
  14. 14. O. A. A. Ahmed and S. M. Badr-Eldin, In situ misemgel as a multifunctional dual-absorption platform for nasal delivery of raloxifene hydrochloride: formulation, characterization, and in vivo performance, Int. J. Nanomedicine 2018(13) 6325–6335; https://doi.org/10.2147/IJN.S181587
  15. 15. J. Sobczyński and B. Chudzik-Rząd, Mixed Micelles as Drug Delivery Nanocarriers, in Design and Develop ment of New Nanocarriers, Elsevier 2018, pp. 331–364.
  16. 16. L. C. Chen, Y. C. Chen, C. Y. Su, W. P. Wong, M. T. Sheu and H. O. Ho, Development and Characterization of lecithin-based self-assembling mixed polymeric micellar (saMPMs) drug delivery systems for curcumin, Sci. Rep. 6 (2016) Article ID 37122 (11 pages); https://doi.org/10.1038/srep37122
  17. 17. L. Mu and S. S. Feng, PLGA/TPGS nanoparticles for controlled release of paclitaxel: effects of the emulsifier and drug loading ratio, Pharm. Res. 20 (2003) 1864–1872; https://doi.org/10.1023/B:PHAM.0000003387.15428.42
  18. 18. J. Song, H. Huang, Z. Xia, Y. Wei, N. Yao, L. Zhang, H. Yan, X. Jia and Z. Zhang, TPGS/phospholipids mixed micelles for delivery of icariside II to multidrug-resistant breast cancer, Integr. Cancer Ther. 15(3) (2016) 390–399; https://doi.org/10.1177/1534735415596571
  19. 19. M. L. Manca, C. Cencetti, P. Matricardi, I. Castangia, M. Zaru, O. D. Sales, A. Nacher, D. Valenti, A. M. Maccioni, A. M. Fadda and M. Manconi, Glycerosomes: Use of hydrogenated soy phosphatidylcholine mixture and its effect on vesicle features and diclofenac skin penetration, Int. J. Pharm. 511(1) (2016) 198–204; https://doi.org/10.1016/j.ijpharm.2016.07.009
  20. 20. M. J. Naguib, S. Salah, S. A. Abdel Halim and S. M. Badr-Eldin, Investigating the potential of utilizing glycerosomes as a novel vesicular platform for enhancing intranasal delivery of lacidipine, Int. J. Pharm. 582 (2020) Article ID 119302 (14 pages); https://doi.org/10.1016/j.ijpharm.2020.119302
  21. 21. R. Shen, J. Kim, M. Yao and T. A. Elbayoumi, Development and evaluation of vitamin E D-α-tocopheryl polyethylene glycol 1000 succinate-mixed polymeric phospholipid micelles of berberine as an anticancer nanopharmaceutical, Int. J. Nanomedicine 2016(11) 1687–1700; https://doi.org/10.2147/IJN.S103332
  22. 22. N. A. Alhakamy, O. A. Ahmed, U. A. Fahmy, H. Z. Asfour, A. F. Alghaith, W. A. Mahdi, S. Alshehri and S. Md, Development, Optimization and evaluation of 2-methoxy-estradiol loaded nanocarrier for prostate cancer, Front. Pharmacol. 12 (2021) Article ID 682337 (14 pages); https://doi.org/10.3389/FPHAR.2021.682337
  23. 23. W. H. Abd-Elsalam, S. A. El-Zahaby and A. M. Al-Mahallawi, Formulation and in vivo assessment of terconazole-loaded polymeric mixed micelles enriched with Cremophor EL as dual functioning mediator for augmenting physical stability and skin delivery, Drug Deliv. 25(1) (2018) 484–492; https://doi.org/10.1080/10717544.2018.1436098
  24. 24. P. Sadasivudu, N. Shastri and M. Sadanandam, Development and validation of RP-HPLC and UV methods of analysis for fluconazole in pharmaceutical solid dosage forms, Int. J. ChemTech Res. 1(4) (2009) 1131–1136.
  25. 25. S. El-Housiny, M. A. S. Eldeen, Y. A. El-Attar, H. A. Salem, D. Attia, E. R. Bendas and M. A. El-Nabarawi, Fluconazole-loaded solid lipid nanoparticles topical gel for treatment of pityriasis versicolor: formulation and clinical study, Drug Deliv. 25(1) (2018) 78–90; https://doi.org/10.1080/10717544.2017.1413444
  26. 26. I. Angulo, M. B. Jiménez-Díaz, J. F. García-Bustos, D. Gargallo, F. Gómez de las Heras, M. A. Muñoz-Fernández and M. Fresno, Candida albicans infection enhances immunosuppression induced by cyclophosphamide by selective priming of suppressive myeloid progenitors for NO production, Cell. Immunol. 218(1–2) (2002) 46–58; https://doi.org/10.1016/S0008-8749(02)00521-X
  27. 27. K. Maebashi, T. Itoyama, K. Uchida, N. Suegara and H. Yamaguchi, A novel model of cutaneous candidiasis produced in prednisolone-treated guinea-pigs, J. Med. Vet. Mycol. 32(5) (1994) 349–359; https://doi.org/10.1080/02681219480000471
  28. 28. S. M. Badr-Eldin, N. A. Alhakamy, U. A. Fahmy, O. A. A. Ahmed, H. Z. Asfour, A. A. Althagafi, H. M. Aldawsari, W. Y. Rizg, W. A. Mahdi, A. F. Alghaith, S. Alshehri, F. Caraci and G. Caruso, Cytotoxic and pro-apoptotic effects of a sub-toxic concentration of fluvastatin on OVCAR3 ovarian cancer cells after its optimized formulation to melittin nano-conjugates, Front. Pharmacol. 11 (2021) Article ID 642171 (12 pages); https://doi.org/10.3389/fphar.2020.642171
  29. 29. U. A. Fahmy, S. M. Badr-Eldin, O. A. A. Ahmed, H. M. Aldawsari, S. Tima, H. Z. Asfour, M. W. Al-Rabia, A. A. Negm, M. H. Sultan, O. A. A. Madkhali and N. A. Alhakamy, Intranasal niosomal in situ gel as a promising approach for enhancing flibanserin bioavailability and brain delivery: In vitro optimization and ex vivo/in vivo evaluation, Pharmaceutics 12(6) (2020) Article ID 485 (23 pages); https://doi.org/10.3390/pharmaceutics12060485
  30. 30. Z. M. Adib, S. Ghanbarzadeh, M. Kouhsoltani, A. Y. Khosroshahi and H. Hamishehkar, The effect of particle size on the deposition of solid lipid nanoparticles in different skin layers: A histological study, Adv. Pharm. Bull. 6(1) (2016) 31–36; https://doi.org/10.15171/apb.2016.006
  31. 31. R. Sharma, S. Kamboj, G. Singh and V. Rana, Development of aprepitant loaded orally disintegrating films for enhanced pharmacokinetic performance, Eur. J. Pharm. Sci. 84 (2016) 55–69; https://doi.org/10.1016/j.ejps.2016.01.006
  32. 32. J. Singh, P. Mittal, G. Vasant Bonde, G. Ajmal and B. Mishra, Design, optimization, characterization and in-vivo evaluation of Quercetin enveloped Soluplus®/P407 micelles in diabetes treatment, Artif. Cells Nanomedicine Biotechnol. 46(sup3) (2018) S546–S555; https://doi.org/10.1080/21691401.2018.1501379
  33. 33. A. E. S. F. Abou El Ela and M. M. El Khatib, Formulation and evaluation of new long acting metoprolol tartrate ophthalmic gels, Saudi Pharm. J. 22(6) (2014) 555–563; https://doi.org/10.1016/j.jsps.2014.03.003
  34. 34. A. A. Alhowyan, M. A. Altamimi, M. A. Kalam, A. A. Khan, M. Badran, Z. Binkhathlan, M. Alkholief and A. Alshamsan, Antifungal efficacy of Itraconazole loaded PLGA-nanoparticles stabilized by vitamin-E TPGS: In vitro and ex vivo studies, J. Microbiol. Methods 161 (2019) 87–95; https://doi.org/10.1016/j.mimet.2019.01.020
  35. 35. L. Qiu, B. Hu, H. Chen, S. Li, Y. Hu, Y. Zheng and X. Wu, Antifungal efficacy of itraconazole-loaded TPGS-b-(PCL-ran-PGA) nanoparticles, Int. J. Nanomedicine 2015(10) 1415–1423; https://doi.org/10.2147/IJN.S71616
DOI: https://doi.org/10.2478/acph-2022-0028 | Journal eISSN: 1846-9558 | Journal ISSN: 1330-0075
Language: English
Page range: 547 - 560
Accepted on: Dec 27, 2021
Published on: Oct 18, 2022
Published by: Croatian Pharmaceutical Society
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year
Related subjects:

© 2022 Shaimaa M. Badr-Eldin, Hibah M. Aldawsari, Usama A. Fahmy, Osama A. A. Ahmed, Nabil A. Alhakamy, Mahmoud A. Elfaky, Alaa Sirwi, Salman A. Hawsawi, Ali H. Alzahrani, Abdulrahman Y. Yaseen, Mohannad Qassim, Sabna Kotta, published by Croatian Pharmaceutical Society
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.