Have a personal or library account? Click to login
Design and development of novel 1,2,3-triazole chalcone derivatives as potential anti-osteosarcoma agents via inhibition of PI3K/Akt/mTOR signalling pathway Cover

Design and development of novel 1,2,3-triazole chalcone derivatives as potential anti-osteosarcoma agents via inhibition of PI3K/Akt/mTOR signalling pathway

By: Qing Su,  Baolin Xu,  Zhoubin Tian and  Ziling Gong  
Open Access
|Apr 2022

References

  1. 1. A. Misaghi, A. Goldin, M. Awad and A. A. Kulidjian, Osteosarcoma: A comprehensive review, SICOT J. 4 (2018) Article ID 12; https://doi.org/10.1051/sicotj/201702810.1051/sicotj/2017028589044829629690
  2. 2. S. S. Bielack, S. Hecker-Nolting, C. Blattmann and L. Kager, Advances in the management of osteosarcoma, F1000Res. 5 (2016) Article ID 2767; https://doi.org/10.12688/f1000research.9465.110.12688/f1000research.9465.1513008227990273
  3. 3. R. A. Durfee, M. Mohammed and H. H. Luu, Review of osteosarcoma and current management, Rheumatol. Ther. 3 (2016) 221–243; https://doi.org/10.1007/s40744-016-0046-y10.1007/s40744-016-0046-y512797027761754
  4. 4. J. Zhang, P. L. Yang and N. S. Gray, Targeting cancer with small molecule kinase inhibitors, Nat. Rev. Cancer 9 (2009) 28–39; https://doi.org/10.1038/nrc255910.1038/nrc255919104514
  5. 5. T. G. Davies, J. Bentley, C. E. Arris, F. T. Boyle, N. J. Curtin, J. A. Endicott, A. E. Gibson, B. T. Golding, R. J. Griffin, I. R. Hardcastle, P. Jewsbury, L. N. Johnson, V. Mesguiche, D. R. Newell, M. E. M. Noble, J. A. Tucker, L. Wang and H. J. Whitfield, Structure-based design of a potent purine-based cyclin-dependent kinase inhibitor, Nat. Struct. Biol. 9 (2002) 745–749; https://doi.org/10.1038/nsb84210.1038/nsb84212244298
  6. 6. J. K. Srivastava, G. G. Pillai, H. R. Bhat, A. Verma and U. P. Singh, Design and discovery of novel monastrol-1,3,5-triazines as potent anti-breast cancer agent via attenuating epidermal growth factor receptor tyrosine kinase, Sci. Rep. 7 (2017) Article ID 5851 (18 pages); https://doi.org/10.1038/s41598-017-05934-510.1038/s41598-017-05934-5551756228724908
  7. 7. L. Jakobsson, J. Kreuger, K. Holmborn, L. Lundin, I. Eriksson, L. Kjellén and L. Claesson-Welsh, Heparan sulfate in trans potentiates VEGFR-mediated angiogenesis, Dev. Cell 10 (2006) 625–634; https://doi.org/10.1016/j.devcel.2006.03.00910.1016/j.devcel.2006.03.00916678777
  8. 8. G. Garg, A. Khandelwal and B. S. J. Blagg, Chapter three – Anticancer inhibitors of Hsp90 function: Beyond the usual suspects, Adv. Cancer Res. 129 (2016) 51–88; https://doi.org/10.1016/bs.acr.2015.12.00110.1016/bs.acr.2015.12.001589242226916001
  9. 9. H. Pópulo, J. M. Lopes and P. Soares, The mTOR signalling pathway in human cancer, Int. J. Mol. Sci. 13(2) (2012) 1886–1918; https://doi.org/10.3390/ijms1302188610.3390/ijms13021886329199922408430
  10. 10. U. P. Singh, J. K. Srivastava and H. R. Bhat, 161P Discovery of novel 1,3,5-triazine-thiourea based dual PI3K/mTOR inhibitor against non-small cell lung cancer (NSCLC), Ann. Oncol. 27(Suppl. 9) (2016) ix50; https://doi.org/10.1093/annonc/mdw579.01310.1093/annonc/mdw579.013
  11. 11. N. Hay, The Akt-mTOR tango and its relevance to cancer, Cancer Cell 8(3) (2005) 179–183; https://doi.org/10.1016/j.ccr.2005.08.00810.1016/j.ccr.2005.08.00816169463
  12. 12. L. Zhang, J. Wu, M. T. Ling, L. Zhao and K.-N. Zhao, The role of the PI3K/Akt/mTOR signalling pathway in human cancers induced by infection with human papillomaviruses, Mol. Cancer 14 (2015) Article ID 87 (13 pages); https://doi.org/10.1186/s12943-015-0361-x10.1186/s12943-015-0361-x449856026022660
  13. 13. X. Liu, Y. Xu, Q. Zhou, M. Chen, Y. Zhang, H. Liang, J. Zhao, W. Zhong and M. Wang, PI3K in cancer: its structure, activation modes and role in shaping tumor microenvironment, Future Oncol.14(7) (2017) 665–674; https://doi.org/10.2217/fon-2017-058810.2217/fon-2017-058829219001
  14. 14. B. Wang and J. Li, Piceatannol suppresses the proliferation and induced apoptosis of osteosarcoma cells through PI3K/AKT/MTOR pathway, Cancer Manag. Res. 12 (2020) 2631–2640; https://doi.org/10.2147/CMAR.S23817310.2147/CMAR.S238173718270332368141
  15. 15. Y. Zhang, Q. Weng, J. Han and J. Chen, Alantolactone suppresses human osteosarcoma through the PI3K/AKT signaling pathway, Mol. Med. Rep. 21(2) (2020) 675–684; https://doi.org/10.3892/mmr.2019.1088210.3892/mmr.2019.10882694791431974628
  16. 16. M. W. Bishop and K. A. Janeway, Emerging concepts for PI3K/mTOR inhibition as a potential treatment for osteosarcoma, F1000Res. 5 (2016) Article ID 1590 (6 pages); https://doi.org/10.12688/F1000RESEARCH.8228.110.12688/f1000research.8228.1493781727441088
  17. 17. J. A. Perry, A. Kiezun, P. Tonzi, E. M. Van Allen, S. L. Carter, S. C. Baca, G. S. Cowley, A. S. Bhatt, E. Rheinbay, C. S. Pedamallu, E. Helman, A. Taylor-Weiner, A. McKenna, D. S. DeLuca, M. S. Lawrence, L. Ambrogio, C. Sougnez, A. Sivachenko, L. D. Walensky, N. Wagle, J. Mora, C. de Torres, C. Lavarino, S. Dos Santos Aguiar, J. A. Yunes, S. R. Brandalise, G. E. Mercado-Celis, J. Melendez-Zajgla, R. Cárdenas-Cardós, L. Velasco-Hidalgo, C. W. M. Roberts, L. A. Garraway, C. Rodriguez-Galindo, S. B. Gabriel, E. S. Lander, T. R. Golub, S. H. Orkin, G. Getz and K. A. Janeway, Complementary genomic approaches highlight the PI3K/mTOR pathway as a common vulnerability in osteosarcoma, Proc. Natl. Acad. Sci. USA 111(51) (2014) E5564–E5573; https://doi.org/10.1073/pnas.141926011110.1073/pnas.1419260111428063025512523
  18. 18. M. Penel-Page, I. Ray-Coquard, J. Larcade, M. Girodet, L. Bouclier, M. Rogasik, N. Corradini, N. Entz-Werle, L. Brugieres, J. Domont, C. Lervat, S. Piperno-Neumann, H. Pacquement, J.-O. Bay, J.-C. Gentet, A. Thyss, L. Chaigneau, B. Narciso, H. Cornille, J.-Y. Blay and P. Marec-Bérard, Off-label use of targeted therapies in osteosarcomas: data from the French registry OUTC’S (Observatoire de l’Utilisation des Thérapies Ciblées dans les Sarcomes), BMC Cancer 15 (2015) Article ID 854 (9 pages); https://doi.org/10.1186/s12885-015-1894-510.1186/s12885-015-1894-5463596826541413
  19. 19. K. Singh, A. Gangrade, A. Jana, B. B. Mandal and N. Das, Design, synthesis, characterization, and antiproliferative activity of organoplatinum compounds bearing a 1,2,3-triazole ring, ACS Omega 4 (2019) 835–841; https://doi.org/10.1021/acsomega.8b0284910.1021/acsomega.8b02849
  20. 20. N. S. Goud, V. Pooladanda, G. S. Mahammad, P. Jakkula, S. Gatreddi, I. A. Qureshi, R. Alvala, C. Godugu and M. Alvala, Synthesis and biological evaluation of morpholines linked coumarintriazole hybrids as anticancer agents, Chem. Biol. Drug Des. 94(5) (2019) 1919–1929; https://doi.org/10.1111/cbdd.1357810.1111/cbdd.1357831169963
  21. 21. G. Silva, M. Marins, A. L. Fachin, S.-H. Lee and S. J. Baek, Anti-cancer activity of trans-chalcone in osteosarcoma: Involvement of Sp1 and p53, Mol. Carcinog. 55(10) (2016) 1438–1448; https://doi.org/10.1002/mc.2238610.1002/mc.2238626294168
  22. 22. T. Ji, C. Lin, L. S. Krill, R. Eskander, Y. Guo, X. Zi and B. H. Hoang, Flavokawain B, a kava chalcone, inhibits growth of human osteosarcoma cells through G2/M cell cycle arrest and apoptosis, Mol. Cancer 12 (2013) Article ID 55 (11 pages); https://doi.org/10.1186/1476-4598-12-5510.1186/1476-4598-12-55368160323764122
  23. 23. D. Dheer, V. Singh and R. Shankar, Medicinal attributes of 1,2,3-triazoles: Current developments, Bioorg. Chem. 71 (2017) 30–54; https://doi.org/10.1016/j.bioorg.2017.01.01010.1016/j.bioorg.2017.01.01028126288
  24. 24. K. Bozorov, J. Zhao and H. A. Aisa, 1,2,3-Triazole-containing hybrids as leads in medicinal chemistry: A recent overview, Bioorg. Med. Chem. 27(16) (2019) 3511–3531; https://doi.org/10.1016/j.bmc.2019.07.00510.1016/j.bmc.2019.07.005718547131300317
  25. 25. Z. Xu, S.-J. Zhao and Y. Liu, 1,2,3-Triazole-containing hybrids as potential anticancer agents: Current developments, action mechanisms and structure-activity relationships, Eur. J. Med. Chem. 183 (2019) Article ID 111700; https://doi.org/10.1016/j.ejmech.2019.11170010.1016/j.ejmech.2019.11170031546197
  26. 26. S. Vanaparthi, R. Bantu, N. Jain, S. Janardhan and L. Nagarapu, Synthesis and anti-proliferative activity of a novel 1,2,3-triazole tethered chalcone acetamide derivatives, Bioorg. Med. Chem. Lett. 30(16) (2020) Article ID 127304.; https://doi.org/10.1016/j.bmcl.2020.12730410.1016/j.bmcl.2020.12730432631524
  27. 27. S. Li, J. Wawrzyniak, Y. Queneau and L. Soulère, 2-Substituted aniline as a simple scaffold for LuxR-regulated QS modulation, Molecules 22(12) (2017) Article ID 2090 (10 pages); https://doi.org/10.3390/molecules2212209010.3390/molecules22122090614992229186042
  28. 28. J. Hu, Y. Zhang, N. Tang, Y. Lu, P. Guo and Z. Huang, Discovery of novel 1,3,5-triazine derivatives as potent inhibitor of cervical cancer via dual inhibition of PI3K/mTOR, Bioorg. Med. Chem. 32 (2021) Article ID 115997; https://doi.org/10.1016/j.bmc.2021.11599710.1016/j.bmc.2021.11599733440319
  29. 29. T.-T. Wu, Q.-Q. Guo, Z.-L. Chen, L.-L. Wang, Y. Du, R. Chen, Y.-H. Mao, S.-G. Yang, J. Huang, J.-T. Wang, L. Wang, L. Tang and J. Q. Zhang, Design, synthesis and bioevaluation of novel substituted triazines as potential dual PI3K/mTOR inhibitors, Eur. J. Med. Chem. 204 (2020) Article ID 112637; https://doi.org/10.1016/j.ejmech.2020.11263710.1016/j.ejmech.2020.11263732717477
  30. 30. C.-H. R. Or, H.-L. Su, W.-C. Lee, S.-Y. Yang, C. Ho and C.-C. Chang, Diphenhydramine induces melanoma cell apoptosis by suppressing STAT3/MCL-1 survival signaling and retards B16-F10 melanoma growth in vivo, Oncol. Rep. 36(6) (2016) 3465–3471; https://doi.org/10.3892/or.2016.520110.3892/or.2016.520127779705
  31. 31. H. F. Ashour, L. A. Abou-zeid, M. A.-A. El-Sayed and K. B. Selim, 1,2,3-Triazole-chalcone hybrids: Synthesis, in vitro cytotoxic activity and mechanistic investigation of apoptosis induction in multiple myeloma RPMI-8226, Eur. J. Med. Chem. 189 (2020) Article ID 112062; https://doi.org/10.1016/j.ejmech.2020.11206210.1016/j.ejmech.2020.11206231986406
  32. 32. D.-J. Fu, S.-Y. Zhang, Y.-C. Liu, X.-X. Yue, J.-J. Liu, J. Song, R.-H. Zhao, F. Li, H.-H. Sun, Y.-B. Zhang and H.-M. Liu, Design, synthesis and antiproliferative activity studies of 1,2,3-triazole-chalcones, MedChemComm 7(8) (2016) 1664–1671; https://doi.org/10.1039/c6md00169f10.1039/C6MD00169F
  33. 33. S.-Y. Zhang, D.-J. Fu, X.-X. Yue, Y.-C. Liu, J. Song, H.-H. Sun, H.-M. Liu and Y.-B. Zhang, Design, synthesis and structure-activity relationships of novel chalcone-1,2,3-triazole-azole derivates as antiproliferative agents, Molecules 21(5) (2016) Article ID 653 (13 pages); https://doi.org/10.3390/molecules2105065310.3390/molecules21050653627451727213317
DOI: https://doi.org/10.2478/acph-2022-0026 | Journal eISSN: 1846-9558 | Journal ISSN: 1330-0075
Language: English
Page range: 389 - 402
Accepted on: Dec 14, 2021
Published on: Apr 13, 2022
Published by: Croatian Pharmaceutical Society
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year
Related subjects:

© 2022 Qing Su, Baolin Xu, Zhoubin Tian, Ziling Gong, published by Croatian Pharmaceutical Society
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.