Have a personal or library account? Click to login
Bivalirudin exerts antiviral activity against respiratory syncytial virus-induced lung infections in neonatal mice Cover

Bivalirudin exerts antiviral activity against respiratory syncytial virus-induced lung infections in neonatal mice

Open Access
|Apr 2022

References

  1. 1. J. W. Schweitzer and N. A. Justice, Respiratory Syncytial Virus Infection (RSV), StatPearls, Treasure Island (FL) 2020.
  2. 2. L. Toivonen, S. Karppinen, L. Schuez-Havupalo, T. Teros-Jaakkola, J. Mertsola, M. Waris and V. Peltola, Respiratory syncytial virus infections in children 0-24 months of age in the community, J. Infect. 80 (2020) 69–75; https://doi.org/10.1016/j.jinf.2019.09.00210.1016/j.jinf.2019.09.002
  3. 3. G. Wennergren and S. Kristjansson, Relationship between respiratory syncytial virus bronchiolitis and future obstructive airway diseases, Eur. Respir. J. 18 (2001) 1044–1058; https://doi.org/10.1183/09031936.01.0025410110.1183/09031936.01.00254101
  4. 4. R. L. Smyth and P. J. Openshaw, Bronchiolitis, Lancet 368 (2006) 312–322; https://doi.org/10.1016/S0140-6736(06)69077-610.1016/S0140-6736(06)69077-6
  5. 5. Y. S. Kwon, S. H. Park, M. A. Kim, H. J. Kim, J. S. Park, M. Y. Lee, C. W. Lee, S. Dauti and W. I. Choi, Risk of mortality associated with respiratory syncytial virus and influenza infection in adults, BMC Infect Dis. 17 (2017) 785; https://doi.org/10.1186/s12879-017-2897-410.1186/s12879-017-2897-4573886329262784
  6. 6. M. Kilpelainen, E. O. Terho, H. Helenius and M. Koskenvuo, Home dampness, current allergic diseases, and respiratory infections among young adults, Thorax 56 (2001) 462–467; https://doi.org/10.1136/thorax.56.6.46210.1136/thorax.56.6.462174606611359962
  7. 7. E. J. Carande, A. J. Pollard and S. B. Drysdale, Management of respiratory syncytial virus bronchiolitis: 2015 Survey of Members of the European Society for Paediatric Infectious Diseases, Canad. J. Infect. Dis. Med. Microbiol. 2016 (2016) 9139537; https://doi.org/10.1155/2016/913953710.1155/2016/9139537509324927840650
  8. 8. S. Uematsu and S. Akira, Toll-like receptors and innate immunity, J. Mol. Med. (Berl). 84 (2006) 712–725; https://doi.org/10.1007/s00109-006-0084-y10.1007/s00109-006-0084-y16924467
  9. 9. E. E. To, J. Erlich, F. Liong, R. Luong, S. Liong, S. Bozinovski, H. J. Seow, J. J. O’Leary, D. A. Brooks, R. Vlahos and S. Selemidis, Intranasal and epicutaneous administration of Toll-like receptor 7 (TLR7) agonists provides protection against influenza A virus-induced morbidity in mice, Sci. Reports 9 (2019) 2366; https://doi.org/10.1038/s41598-019-38864-510.1038/s41598-019-38864-5638277330787331
  10. 10. M. S. Russell, M. Creskey, A. Muralidharan, C. Li, J. Gao, W. Chen, L. Larocque, J. R. Lavoie, A. Farnsworth, M. Rosu-Myles, A. M. Hashem, C. L. Yauk, J. Cao, G. Van Domselaar, T. Cyr and X. Li, Unveiling integrated functional pathways leading to enhanced respiratory disease associated with inactivated respiratory syncytial viral vaccine, Front. Immunol. 10 (2019) 597; https://doi.org/10.3389/fimmu.2019.0059710.3389/fimmu.2019.00597644943530984178
  11. 11. B. E. Berlioz and D. Sanghavi, Bivalirudin, StatPearls, Treasure Island (FL) 2020.
  12. 12. K. L. Zaleski, J. A. DiNardo and V. G. Nasr, Bivalirudin for pediatric procedural anticoagulation: A narrative review, Anesth Analg. 128 (2019) 43–55; https://doi.org/10.1213/ANE.000000000000283510.1213/ANE.000000000000283529461391
  13. 13. M. Q. Nicol, Y. Ligertwood, M. N. Bacon, B. M. Dutia and A. A. Nash, A novel family of peptides with potent activity against influenza A viruses, J. Gen. Virol. 93 (2012) 980–986; https://doi.org/10.1099/vir.0.038679-010.1099/vir.0.038679-0
  14. 14. C. Ezetendu, A. Jarden, M. Hamza and R. Stewart, Bivalirudin anticoagulation for an infant with hyperbilirubinemia and elevated plasma-free hemoglobin on ECMO, J. Extra Corpor. Technol. 51 (2019) 26–28.
  15. 15. I. J. Welsby, W. L. Jones, G. Arepally, F. De Lange, K. Yoshitani, B. Phillips-Bute, H. P. Grocott, R. Becker and G. B. Mackensen, Effect of combined anticoagulation using heparin and bivalirudin on the hemostatic and inflammatory responses to cardiopulmonary bypass in the rat, Anesthesiology 106 (2007) 295–301; https://doi.org/10.1097/00000542-200702000-0001810.1097/00000542-200702000-00018
  16. 16. I. Martinez, L. Lombardia, C. Herranz, B. Garcia-Barreno, O. Dominguez and J. A. Melero, Cultures of HEp-2 cells persistently infected by human respiratory syncytial virus differ in chemokine expression and resistance to apoptosis as compared to lytic infections of the same cell type, Virology 388 (2009) 31–41; https://doi.org/10.1016/j.virol.2009.03.00810.1016/j.virol.2009.03.008
  17. 17. Y. Sun and C. B. Lopez, Respiratory syncytial virus infection in mice and detection of viral genomes in the lung using RT-qPCR, Bio. Protoc. 6 (2016) https://doi.org/10.21769/BioProtoc.181910.21769/BioProtoc.1819
  18. 18. V. B. Le, J. G. Schneider, Y. Boergeling, F. Berri, M. Ducatez, J. L. Guerin, I. Adrian, E. Errazuriz-Cerda, S. Frasquilho, L. Antunes, B. Lina, J. C. Bordet, M. Jandrot-Perrus, S. Ludwig and B. Riteau, Platelet activation and aggregation promote lung inflammation and influenza virus pathogenesis, Am. J. Respir. Crit. Care Med. 191 (2015) 804–819; https://doi.org/10.1164/rccm.201406-1031OC10.1164/rccm.201406-1031OC
  19. 19. V. B. Le, B. Riteau, M. C. Alessi, C. Couture, M. Jandrot-Perrus, C. Rheaume, M. E. Hamelin and G. Boivin, Protease-activated receptor 1 inhibition protects mice against thrombin-dependent respiratory syncytial virus and human metapneumovirus infections, Br. J. Pharmacol. 175 (2018) 388–403; https://doi.org/10.1111/bph.14084.10.1111/bph.14084
  20. 20. D. Gkentzi, G. Dimitriou and A. Karatza, Non-pulmonary manifestations of respiratory syncytial virus infection, J. Thorac. Dis. 10 (2018) S3815-S3818; https://doi.org/10.21037/jtd.2018.10.38.10.21037/jtd.2018.10.38
  21. 21. P. M. Tiwari, E. Eroglu, S. Boyoglu-Barnum, Q. He, G. A. Willing, K. Vig, V. A. Dennis and S. R. Singh, Atomic force microscopic investigation of respiratory syncytial virus infection in HEp-2 cells, J. Microsc. 253 (2014) 31–41; https://doi.org/10.1111/jmi.1209510.1111/jmi.12095
  22. 22. L. Ulloa, R. Serra, A. Asenjo and N. Villanueva, Interactions between cellular actin and human respiratory syncytial virus (HRSV), Virus Res. 53 (1998) 13–25; https://doi.org/10.1016/s0168-1702(97)00121-410.1016/S0168-1702(97)00121-4
  23. 23. A. R. Alsuwaidi, A. Albawardi, S. Almarzooqi, S. Benedict, A. R. Othman, S. M. Hartwig, S. M. Varga and A. K. Souid, Respiratory syncytial virus increases lung cellular bioenergetics in neonatal C57BL/6 mice, Virology 454 (2014) 263–269; https://doi.org/10.1016/j.virol.2014.02.02810.1016/j.virol.2014.02.02824725953
  24. 24. C. T. Esmon, The impact of the inflammatory response on coagulation, Thromb Res. 114 (2004) 321–327; https://doi.org/10.1016/j.thromres.2004.06.02810.1016/j.thromres.2004.06.02815507261
  25. 25. R. Trisolini, R. Dallari, A. Cancellieri and V. Poletti, Interstitial Lung Diseases, 1st ed., JayPee Brothers Medical Publisher, New Delhi 2012, pp. 234–235.
  26. 26. T. T. Keller, K. F. van der Sluijs, M. D. de Kruif, V. E. Gerdes, J. C. Meijers, S. Florquin, T. van der Poll, E. C. van Gorp, D. P. Brandjes, H. R. Buller and M. Levi, Effects on coagulation and fibrinolysis induced by influenza in mice with a reduced capacity to generate activated protein C and a deficiency in plasminogen activator inhibitor type 1, Circ. Res. 99 (2006) 1261–1269; https://doi.org/10.1161/01.RES.0000250834.29108.1a10.1161/01.RES.0000250834.29108.1a17068293
  27. 27. M. van Wissen, T. T. Keller, E. C. van Gorp, V. E. Gerdes, J. C. Meijers, G. J. van Doornum, H. R. Buller and D. P. Brandjes, Acute respiratory tract infection leads to procoagulant changes in human subjects, J. Thromb Haemost. 9 (2011) 1432–1434; https://doi.org/10.1111/j.1538-7836.2011.04340.x10.1111/j.1538-7836.2011.04340.x716693521605331
  28. 28. X. Stephenne, E. Nicastro, S. Eeckhoudt, C. Hermans, O. Nyabi, C. Lombard, M. Najimi and E. Sokal, Bivalirudin in combination with heparin to control mesenchymal cell procoagulant activity, PLoS One 7 (2012) e42819; https://doi.org/10.1371/journal.pone.004281910.1371/journal.pone.0042819341678822900053
  29. 29. D. J. Groskreutz, M. M. Monick, L. S. Powers, T. O. Yarovinsky, D. C. Look and G. W. Hunninghake, Respiratory syncytial virus induces TLR3 protein and protein kinase R, leading to increased double-stranded RNA responsiveness in airway epithelial cells, J. Immunol. 176 (2006) 1733–1740; https://doi.org/10.4049/jimmunol.176.3.1733.10.4049/jimmunol.176.3.173316424203
  30. 30. J. A. Patel, Z. Jiang, N. Nakajima and M. Kunimoto, Autocrine regulation of interleukin-8 by inter-leukin-1a in respiratory syncytial virus-infected pulmonary epithelial cells in vitro, Immunology 95 (1998) 501–506; https://doi.org/10.1046/j.1365-2567.1998.00640.x10.1046/j.1365-2567.1998.00640.x13643449893037
  31. 31. T. Liu, N. Zang, N. Zhou, W. Li, X. Xie, Y. Deng, L. Ren, X. Long, S. Li, L. Zhou, X. Zhao, W. Tu, L. Wang, B. Tan and E. Liu, Resveratrol inhibits the TRIF-dependent pathway by upregulating sterile alpha and armadillo motif protein, contributing to anti-inflammatory effects after respiratory syncytial virus infection, J. Virol. 88 (2014) 4229–4236; https://doi.org/10.1128/JVI.03637-1310.1128/JVI.03637-13399372524478430
  32. 32. T. Kawai and S. Akira, TLR signaling, Semin. Immunol. 19 (2007) 24–32; https://doi.org/10.1016/j.smim.2006.12.00410.1016/j.smim.2006.12.00417275323
  33. 33. J. M. Schuh, K. Blease, H. Bruhl, M. Mack and C. M. Hogaboam, Intrapulmonary targeting of RANTES/CCL5-responsive cells prevents chronic fungal asthma, Eur. J. Immunol. 33 (2003) 3080–3090; https://doi.org/10.1002/eji.20032391710.1002/eji.20032391714579276
  34. 34. F. J. Culley, A. M. Pennycook, J. S. Tregoning, J. S. Dodd, G. Walzl, T. N. Wells, T. Hussell and P. J. M. Openshaw, Role of CCL5 (RANTES) in viral lung disease, J. Virol. 80 (2006) 8151–8157; https://doi.org/10.1128/JVI.00496-0610.1128/JVI.00496-06156383716873271
  35. 35. S. Huang, W. Wei and Y. Yun, Upregulation of TLR7 and TLR3 gene expression in the lung of respiratory syncytial virus infected mice, Wei Sheng Wu Xue Bao 49 (2009) 239–245.
  36. 36. N. W. Lukacs, J. J. Smit, S. Mukherjee, S. B. Morris, G. Nunez and D. M. Lindell, Respiratory virus-induced TLR7 activation controls IL-17-associated increased mucus via IL-23 regulation, J. Immunol. 185 (2010) 2231–2239; https://doi.org/10.4049/jimmunol.100073310.4049/jimmunol.1000733300645420624950
  37. 37. T. H. Kim and H. K. Lee, Innate immune recognition of respiratory syncytial virus infection, BMB Rep. 47 (2014) 184–191; https://doi.org/10.5483/bmbrep.2014.47.4.05010.5483/BMBRep.2014.47.4.050416388724568879
  38. 38. F. C. M. Kirsebom, F. Kausar, R. Nuriev, S. Makris and C. Johansson, Neutrophil recruitment and activation are differentially dependent on MyD88/TRIF and MAVS signaling during RSV infection, Mucosal Immunol. 12 (2019) 1244–1255; https://doi.org/10.1038/s41385-019-0190-010.1038/s41385-019-0190-0677805531358860
  39. 39. M. Goritzka, S. Makris, F. Kausar, L. R. Durant, C. Pereira, Y. Kumagai, F. J. Culley, M. Mack, S. Akira and C. Johansson, Alveolar macrophage-derived type I interferons orchestrate innate immunity to RSV through recruitment of antiviral monocytes, J. Exp. Med. 212 (2015) 699–714; https://doi.org/10.1084/jem.2014082510.1084/jem.20140825441933925897172
  40. 40. V. Papayannopoulos, Neutrophil extracellular traps in immunity and disease, Nat. Rev. Immunol. 18 (2018) 134–147; https://doi.org/10.1038/nri.2017.10510.1038/nri.2017.10528990587
DOI: https://doi.org/10.2478/acph-2022-0022 | Journal eISSN: 1846-9558 | Journal ISSN: 1330-0075
Language: English
Page range: 415 - 425
Accepted on: Sep 20, 2021
Published on: Apr 13, 2022
Published by: Croatian Pharmaceutical Society
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year
Related subjects:

© 2022 Shihao Zhuang, Qiuyu Tang, Ping Chen, Chengyi Wang, Guanghua Liu, published by Croatian Pharmaceutical Society
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.