References
- 1. J. W. Schweitzer and N. A. Justice, Respiratory Syncytial Virus Infection (RSV), StatPearls, Treasure Island (FL) 2020.
- 2. L. Toivonen, S. Karppinen, L. Schuez-Havupalo, T. Teros-Jaakkola, J. Mertsola, M. Waris and V. Peltola, Respiratory syncytial virus infections in children 0-24 months of age in the community, J. Infect. 80 (2020) 69–75; https://doi.org/10.1016/j.jinf.2019.09.00210.1016/j.jinf.2019.09.002
- 3. G. Wennergren and S. Kristjansson, Relationship between respiratory syncytial virus bronchiolitis and future obstructive airway diseases, Eur. Respir. J. 18 (2001) 1044–1058; https://doi.org/10.1183/09031936.01.0025410110.1183/09031936.01.00254101
- 4. R. L. Smyth and P. J. Openshaw, Bronchiolitis, Lancet 368 (2006) 312–322; https://doi.org/10.1016/S0140-6736(06)69077-610.1016/S0140-6736(06)69077-6
- 5. Y. S. Kwon, S. H. Park, M. A. Kim, H. J. Kim, J. S. Park, M. Y. Lee, C. W. Lee, S. Dauti and W. I. Choi, Risk of mortality associated with respiratory syncytial virus and influenza infection in adults, BMC Infect Dis. 17 (2017) 785; https://doi.org/10.1186/s12879-017-2897-410.1186/s12879-017-2897-4573886329262784
- 6. M. Kilpelainen, E. O. Terho, H. Helenius and M. Koskenvuo, Home dampness, current allergic diseases, and respiratory infections among young adults, Thorax 56 (2001) 462–467; https://doi.org/10.1136/thorax.56.6.46210.1136/thorax.56.6.462174606611359962
- 7. E. J. Carande, A. J. Pollard and S. B. Drysdale, Management of respiratory syncytial virus bronchiolitis: 2015 Survey of Members of the European Society for Paediatric Infectious Diseases, Canad. J. Infect. Dis. Med. Microbiol. 2016 (2016) 9139537; https://doi.org/10.1155/2016/913953710.1155/2016/9139537509324927840650
- 8. S. Uematsu and S. Akira, Toll-like receptors and innate immunity, J. Mol. Med. (Berl). 84 (2006) 712–725; https://doi.org/10.1007/s00109-006-0084-y10.1007/s00109-006-0084-y16924467
- 9. E. E. To, J. Erlich, F. Liong, R. Luong, S. Liong, S. Bozinovski, H. J. Seow, J. J. O’Leary, D. A. Brooks, R. Vlahos and S. Selemidis, Intranasal and epicutaneous administration of Toll-like receptor 7 (TLR7) agonists provides protection against influenza A virus-induced morbidity in mice, Sci. Reports 9 (2019) 2366; https://doi.org/10.1038/s41598-019-38864-510.1038/s41598-019-38864-5638277330787331
- 10. M. S. Russell, M. Creskey, A. Muralidharan, C. Li, J. Gao, W. Chen, L. Larocque, J. R. Lavoie, A. Farnsworth, M. Rosu-Myles, A. M. Hashem, C. L. Yauk, J. Cao, G. Van Domselaar, T. Cyr and X. Li, Unveiling integrated functional pathways leading to enhanced respiratory disease associated with inactivated respiratory syncytial viral vaccine, Front. Immunol. 10 (2019) 597; https://doi.org/10.3389/fimmu.2019.0059710.3389/fimmu.2019.00597644943530984178
- 11. B. E. Berlioz and D. Sanghavi, Bivalirudin, StatPearls, Treasure Island (FL) 2020.
- 12. K. L. Zaleski, J. A. DiNardo and V. G. Nasr, Bivalirudin for pediatric procedural anticoagulation: A narrative review, Anesth Analg. 128 (2019) 43–55; https://doi.org/10.1213/ANE.000000000000283510.1213/ANE.000000000000283529461391
- 13. M. Q. Nicol, Y. Ligertwood, M. N. Bacon, B. M. Dutia and A. A. Nash, A novel family of peptides with potent activity against influenza A viruses, J. Gen. Virol. 93 (2012) 980–986; https://doi.org/10.1099/vir.0.038679-010.1099/vir.0.038679-0
- 14. C. Ezetendu, A. Jarden, M. Hamza and R. Stewart, Bivalirudin anticoagulation for an infant with hyperbilirubinemia and elevated plasma-free hemoglobin on ECMO, J. Extra Corpor. Technol. 51 (2019) 26–28.
- 15. I. J. Welsby, W. L. Jones, G. Arepally, F. De Lange, K. Yoshitani, B. Phillips-Bute, H. P. Grocott, R. Becker and G. B. Mackensen, Effect of combined anticoagulation using heparin and bivalirudin on the hemostatic and inflammatory responses to cardiopulmonary bypass in the rat, Anesthesiology 106 (2007) 295–301; https://doi.org/10.1097/00000542-200702000-0001810.1097/00000542-200702000-00018
- 16. I. Martinez, L. Lombardia, C. Herranz, B. Garcia-Barreno, O. Dominguez and J. A. Melero, Cultures of HEp-2 cells persistently infected by human respiratory syncytial virus differ in chemokine expression and resistance to apoptosis as compared to lytic infections of the same cell type, Virology 388 (2009) 31–41; https://doi.org/10.1016/j.virol.2009.03.00810.1016/j.virol.2009.03.008
- 17. Y. Sun and C. B. Lopez, Respiratory syncytial virus infection in mice and detection of viral genomes in the lung using RT-qPCR, Bio. Protoc. 6 (2016) https://doi.org/10.21769/BioProtoc.181910.21769/BioProtoc.1819
- 18. V. B. Le, J. G. Schneider, Y. Boergeling, F. Berri, M. Ducatez, J. L. Guerin, I. Adrian, E. Errazuriz-Cerda, S. Frasquilho, L. Antunes, B. Lina, J. C. Bordet, M. Jandrot-Perrus, S. Ludwig and B. Riteau, Platelet activation and aggregation promote lung inflammation and influenza virus pathogenesis, Am. J. Respir. Crit. Care Med. 191 (2015) 804–819; https://doi.org/10.1164/rccm.201406-1031OC10.1164/rccm.201406-1031OC
- 19. V. B. Le, B. Riteau, M. C. Alessi, C. Couture, M. Jandrot-Perrus, C. Rheaume, M. E. Hamelin and G. Boivin, Protease-activated receptor 1 inhibition protects mice against thrombin-dependent respiratory syncytial virus and human metapneumovirus infections, Br. J. Pharmacol. 175 (2018) 388–403; https://doi.org/10.1111/bph.14084.10.1111/bph.14084
- 20. D. Gkentzi, G. Dimitriou and A. Karatza, Non-pulmonary manifestations of respiratory syncytial virus infection, J. Thorac. Dis. 10 (2018) S3815-S3818; https://doi.org/10.21037/jtd.2018.10.38.10.21037/jtd.2018.10.38
- 21. P. M. Tiwari, E. Eroglu, S. Boyoglu-Barnum, Q. He, G. A. Willing, K. Vig, V. A. Dennis and S. R. Singh, Atomic force microscopic investigation of respiratory syncytial virus infection in HEp-2 cells, J. Microsc. 253 (2014) 31–41; https://doi.org/10.1111/jmi.1209510.1111/jmi.12095
- 22. L. Ulloa, R. Serra, A. Asenjo and N. Villanueva, Interactions between cellular actin and human respiratory syncytial virus (HRSV), Virus Res. 53 (1998) 13–25; https://doi.org/10.1016/s0168-1702(97)00121-410.1016/S0168-1702(97)00121-4
- 23. A. R. Alsuwaidi, A. Albawardi, S. Almarzooqi, S. Benedict, A. R. Othman, S. M. Hartwig, S. M. Varga and A. K. Souid, Respiratory syncytial virus increases lung cellular bioenergetics in neonatal C57BL/6 mice, Virology 454 (2014) 263–269; https://doi.org/10.1016/j.virol.2014.02.02810.1016/j.virol.2014.02.02824725953
- 24. C. T. Esmon, The impact of the inflammatory response on coagulation, Thromb Res. 114 (2004) 321–327; https://doi.org/10.1016/j.thromres.2004.06.02810.1016/j.thromres.2004.06.02815507261
- 25. R. Trisolini, R. Dallari, A. Cancellieri and V. Poletti, Interstitial Lung Diseases, 1st ed., JayPee Brothers Medical Publisher, New Delhi 2012, pp. 234–235.
- 26. T. T. Keller, K. F. van der Sluijs, M. D. de Kruif, V. E. Gerdes, J. C. Meijers, S. Florquin, T. van der Poll, E. C. van Gorp, D. P. Brandjes, H. R. Buller and M. Levi, Effects on coagulation and fibrinolysis induced by influenza in mice with a reduced capacity to generate activated protein C and a deficiency in plasminogen activator inhibitor type 1, Circ. Res. 99 (2006) 1261–1269; https://doi.org/10.1161/01.RES.0000250834.29108.1a10.1161/01.RES.0000250834.29108.1a17068293
- 27. M. van Wissen, T. T. Keller, E. C. van Gorp, V. E. Gerdes, J. C. Meijers, G. J. van Doornum, H. R. Buller and D. P. Brandjes, Acute respiratory tract infection leads to procoagulant changes in human subjects, J. Thromb Haemost. 9 (2011) 1432–1434; https://doi.org/10.1111/j.1538-7836.2011.04340.x10.1111/j.1538-7836.2011.04340.x716693521605331
- 28. X. Stephenne, E. Nicastro, S. Eeckhoudt, C. Hermans, O. Nyabi, C. Lombard, M. Najimi and E. Sokal, Bivalirudin in combination with heparin to control mesenchymal cell procoagulant activity, PLoS One 7 (2012) e42819; https://doi.org/10.1371/journal.pone.004281910.1371/journal.pone.0042819341678822900053
- 29. D. J. Groskreutz, M. M. Monick, L. S. Powers, T. O. Yarovinsky, D. C. Look and G. W. Hunninghake, Respiratory syncytial virus induces TLR3 protein and protein kinase R, leading to increased double-stranded RNA responsiveness in airway epithelial cells, J. Immunol. 176 (2006) 1733–1740; https://doi.org/10.4049/jimmunol.176.3.1733.10.4049/jimmunol.176.3.173316424203
- 30. J. A. Patel, Z. Jiang, N. Nakajima and M. Kunimoto, Autocrine regulation of interleukin-8 by inter-leukin-1a in respiratory syncytial virus-infected pulmonary epithelial cells in vitro, Immunology 95 (1998) 501–506; https://doi.org/10.1046/j.1365-2567.1998.00640.x10.1046/j.1365-2567.1998.00640.x13643449893037
- 31. T. Liu, N. Zang, N. Zhou, W. Li, X. Xie, Y. Deng, L. Ren, X. Long, S. Li, L. Zhou, X. Zhao, W. Tu, L. Wang, B. Tan and E. Liu, Resveratrol inhibits the TRIF-dependent pathway by upregulating sterile alpha and armadillo motif protein, contributing to anti-inflammatory effects after respiratory syncytial virus infection, J. Virol. 88 (2014) 4229–4236; https://doi.org/10.1128/JVI.03637-1310.1128/JVI.03637-13399372524478430
- 32. T. Kawai and S. Akira, TLR signaling, Semin. Immunol. 19 (2007) 24–32; https://doi.org/10.1016/j.smim.2006.12.00410.1016/j.smim.2006.12.00417275323
- 33. J. M. Schuh, K. Blease, H. Bruhl, M. Mack and C. M. Hogaboam, Intrapulmonary targeting of RANTES/CCL5-responsive cells prevents chronic fungal asthma, Eur. J. Immunol. 33 (2003) 3080–3090; https://doi.org/10.1002/eji.20032391710.1002/eji.20032391714579276
- 34. F. J. Culley, A. M. Pennycook, J. S. Tregoning, J. S. Dodd, G. Walzl, T. N. Wells, T. Hussell and P. J. M. Openshaw, Role of CCL5 (RANTES) in viral lung disease, J. Virol. 80 (2006) 8151–8157; https://doi.org/10.1128/JVI.00496-0610.1128/JVI.00496-06156383716873271
- 35. S. Huang, W. Wei and Y. Yun, Upregulation of TLR7 and TLR3 gene expression in the lung of respiratory syncytial virus infected mice, Wei Sheng Wu Xue Bao 49 (2009) 239–245.
- 36. N. W. Lukacs, J. J. Smit, S. Mukherjee, S. B. Morris, G. Nunez and D. M. Lindell, Respiratory virus-induced TLR7 activation controls IL-17-associated increased mucus via IL-23 regulation, J. Immunol. 185 (2010) 2231–2239; https://doi.org/10.4049/jimmunol.100073310.4049/jimmunol.1000733300645420624950
- 37. T. H. Kim and H. K. Lee, Innate immune recognition of respiratory syncytial virus infection, BMB Rep. 47 (2014) 184–191; https://doi.org/10.5483/bmbrep.2014.47.4.05010.5483/BMBRep.2014.47.4.050416388724568879
- 38. F. C. M. Kirsebom, F. Kausar, R. Nuriev, S. Makris and C. Johansson, Neutrophil recruitment and activation are differentially dependent on MyD88/TRIF and MAVS signaling during RSV infection, Mucosal Immunol. 12 (2019) 1244–1255; https://doi.org/10.1038/s41385-019-0190-010.1038/s41385-019-0190-0677805531358860
- 39. M. Goritzka, S. Makris, F. Kausar, L. R. Durant, C. Pereira, Y. Kumagai, F. J. Culley, M. Mack, S. Akira and C. Johansson, Alveolar macrophage-derived type I interferons orchestrate innate immunity to RSV through recruitment of antiviral monocytes, J. Exp. Med. 212 (2015) 699–714; https://doi.org/10.1084/jem.2014082510.1084/jem.20140825441933925897172
- 40. V. Papayannopoulos, Neutrophil extracellular traps in immunity and disease, Nat. Rev. Immunol. 18 (2018) 134–147; https://doi.org/10.1038/nri.2017.10510.1038/nri.2017.10528990587