References
- 1. J. M. Beitz, Parkinson´s disease a review, Front. Biosci. 6 (2014) 65–74; https://doi.org/10.2741/S41510.2741/S415
- 2. D. M. Radhakrishnan and V. Goyal, Parkinson’s disease: A review, Neurol. India 66 (2018) 26–35; https://doi.org/10.4103/0028-3886.22645110.4103/0028-3886.226451
- 3. L. V. Kalia and A. E. Lang, Parkinson’s disease, Lancet 386 (2015) 896–912; https://doi.org/10.1016/S0140-6736(14)61393-310.1016/S0140-6736(14)61393-3
- 4. F. J. Carod-Artal, H. M. Mesquita, S. Ziomkowski and P. Martinez-Martin, Burden and health-related quality of life among caregivers of Brazilian Parkinson’s disease patients, Park. Relat. Disord. 19 (2013) 943–948; https://doi.org/10.1016/j.parkreldis.2013.06.00510.1016/j.parkreldis.2013.06.005
- 5. N. L. G. del Rey, A. Quiroga-Varela, E. Garbayo, I. Carballo-Carbajal, R. Fernández-Santiago, M. H. G. Monje, I. Trigo-Damas, M. J. Blanco-Prieto and J. Blesa, Advances in Parkinson’s disease: 200 years later, Front. Neuroanat. 12 (2018) Article ID 113 (14 pages); https://doi.org/10.3389/fnana.2018.0011310.3389/fnana.2018.00113
- 6. K. A. Jellinger, Accuracy of clinical diagnosis of Parkinson disease: A systematic review and meta-analysis, Neurology 87 (2016) 237–238; https://doi.org/10.1212/WNL.000000000000287610.1212/WNL.0000000000002876
- 7. A. Iranzo, E. Tolosa, E. Gelpi, J. L. Molinuevo, F. Valldeoriola, M. Serradell, R. Sanchez-Valle, I. Vilaseca, F. Lomeña, D. Vilas, A. LLadó, C. Gaig and J. Santamaria, Neurodegenerative disease status and post-mortem pathology in idiopathic rapid-eye-movement sleep behaviour disorder: An observational cohort study, Lancet Neurol. 12 (2013) 443–453; https://doi.org/10.1016/S1474-4422(13)70056-510.1016/S1474-4422(13)70056-5
- 8. J. M. Miyasaki, W. Martin, O. Suchowersky, W. J. Weiner and A. E. Lang, Practice parameter: Initiation of treatment for Parkinson’s disease: An evidence-based review: Report of the quality standards subcommittee of the American Academy of Neurology, Neurology 58 (2002) 11–17; https://doi.org/10.1212/WNL.58.1.1110.1212/WNL.58.1.1111781398
- 9. K. Seppi, D. Weintraub, M. Coelho, S. Perez-Lloret, S. H. Fox, R. Katzenschlager, E. M. Hametner, W. Poewe, O. Rascol, C. G. Goetz and C. Sampaio, The Movement Disorder Society disease evidence-based medicine review update: Treatments for the non-motor symptoms of Parkinson’s, Mov. Disord. 26 (2011) 42–80; https://doi.org/10.1002/mds.2388410.1002/mds.23884402014522021174
- 10. B. S. Connolly and A. E. Lang, Pharmacological treatment of Parkinson disease: A review, JAMA 311 (2014) 1670–1683; https://doi.org/10.1001/jama.2014.365410.1001/jama.2014.365424756517
- 11. J. M. Hatcher, K. D. Pennell and G. W. Miller, Parkinson’s disease and pesticides: a toxicological perspective, Trends Pharmacol. Sci. 29 (2008) 322–329; https://doi.org/10.1016/j.tips.2008.03.00710.1016/j.tips.2008.03.007568384618453001
- 12. M. Van der Mark, M. Brouwer, H. Kromhout, P. Nijssen, A. Huss and R. Vermeulen, Is pesticide use related to Parkinson disease? Some clues to heterogeneity in study results, Environ. Health Perspect. 120 (2012) 340–347; https://doi.org/10.1289/ehp.110388110.1289/ehp.1103881329535022389202
- 13. D. Belvisi, R. Pellicciari, G. Fabbrini, M. Tinazzi, A. Berardelli and G. Defazio, Modifiable risk and protective factors in disease development, progression and clinical subtypes of Parkinson’s disease: What do prospective studies suggest?, Neurobiol. Dis. 134 (2020) 1–10; https://doi.org/10.1016/j.nbd.2019.10467110.1016/j.nbd.2019.10467131706021
- 14. F. Tuchsen and A. Astrup Jensen, Agricultural work and the risk of Parkinson’s disease in Denmark, 1981-1993, Scand. J. Work Environ. Health 26 (2000) 359–362; https://doi.org/10.5271/sjweh.55410.5271/sjweh.55410994803
- 15. H. Petrovitch, G. Webster Ross, R. D. Abbott, W. T. Sanderson, D. S. Sharp, C. M. Tanner, K. H. Masaki, P. L. Blanchette, J. S. Popper, D. Foley, L. Launer and L. R. White, Plantation work and risk of Parkinson disease in a population-based longitudinal study, Arch. Neurol. 59 (2002) 1787–1792; https://doi.org/10.1001/archneur.59.11.178710.1001/archneur.59.11.178712433267
- 16. I. Baldi, P. Lebailly, B. Mohammed-Brahim, L. Letenneur, J. F. Dartigues and P. Brochard, Neuro-degenerative diseases and exposure to pesticides in the elderly, Am. J. Epidemiol. 157 (2003) 409–414; https://doi.org/10.1093/aje/kwf216.A
- 17. A. Ascherio, H. Chen, M. G. Weisskopf, E. O’Reilly, M. L. McCullough, E. E. Calle, M. A. Schwarzschild and M. J. Thun, Pesticide exposure and risk for Parkinson’s disease, Ann. Neurol. 60 (2006) 197–203; https://doi.org/10.1002/ana.2090410.1002/ana.2090416802290
- 18. M. G. Weisskopf, P. Knekt, E. J. O’Reilly, J. Lyytinen, A. Reunanen, F. Laden, L. Altshul and A. Ascherio, Persistent organochlorine pesticides in serum and risk of Parkinson disease, Neurology 74 (2010) 1055–1061; https://doi.org/10.1212/WNL.0b013e3181d76a9310.1212/WNL.0b013e3181d76a93284810520350979
- 19. A. L. Feldman, A. L. V. Johansson, G. Nise, M. Gatz, N. L. Pedersen and K. Wirdefeldt, Occupational exposure in Parkinsonian disorders: A 43-year prospective cohort study in men, Park. Relat. Disord. 17 (2011) 677–682; https://doi.org/10.1016/j.parkreldis.2011.06.00910.1016/j.parkreldis.2011.06.009320047121733735
- 20. L. Kenborg, C. F. Lassen, F. Lander and J. H. Olsen, Parkinson’s disease among gardeners exposed to pesticides – a Danish cohort study, Scand. J. Work Environ. Health 38 (2012) 65–69; https://doi.org/10.5271/sjweh.317610.5271/sjweh.317621687921
- 21. M. Brouwer, T. Koeman, P. A. Van Den Brandt, H. Kromhout, L. J. Schouten, S. Peters, A. Huss and R. Vermeulen, Occupational exposures and Parkinson’s disease mortality in a prospective Dutch cohort, Occup. Environ. Med. 72 (2015) 448–455; https://doi.org/10.1136/oemed-2014-10220910.1136/oemed-2014-10220925713156
- 22. P. Mulcahy, S. Walsh, A. Paucard, K. Rea and E. Dowd, Characterisation of a novel model of Parkinson’s disease by intra-striatal infusion of the pesticide rotenone, Neuroscience 181 (2011) 234–242; https://doi.org/10.1016/j.neuroscience.2011.01.03810.1016/j.neuroscience.2011.01.038
- 23. R. E. Heikkila, W. J. Nicklas, I. Vyas and R. C. Duvoisin, Dopaminergic toxicity of rotenone and the 1-methyl-4-phenylpyridinium ion after their stereotaxic administration to rats: Implication for the mechanism of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine toxicity, Neurosci. Lett. 59 (1985) 135–140; https://doi.org/10.1016/0304-3940(85)90580-410.1016/0304-3940(85)90580-4
- 24. R. J. Ferrante, J. B. Schulz, N. W. Kowall and M. F. Beal, Systemic administration of rotenone produces selective damage in the striatum and globus pallidus, but not in the substantia nigra, Brain Res. 753 (1997) 157–162; https://doi.org/10.1016/S0006-8993(97)00008-510.1016/S0006-8993(97)00008-5
- 25. R. Betarbet, T. B. Sherer, G. MacKenzie, M. Garcia-Osuna, A. V. Panov and J. T. Greenamyre, Chronic systemic pesticide exposure reproduces features of Parkinson’s disease, Nat. Neurosci. 3 (2000) 1301–1306; https://doi.org/10.1038/8183410.1038/8183411100151
- 26. J. T. Greenamyre, J. R. Cannon, R. Drolet and P. G. Mastroberardino, Lessons from the rotenone model of Parkinson’s disease, Trends Pharmacol. Sci. 31 (2010) 141–142; https://doi.org/10.1016/j.tips.2009.12.00610.1016/j.tips.2009.12.006284699220096940
- 27. F. Pan-Montojo, O. Anichtchik, Y. Dening, L. Knels, S. Pursche, R. Jung, S. Jackson, G. Gille, M. G. Spillantini, H. Reichmann and R. H. W. Funk, Progression of Parkinson’s disease pathology is reproduced by intragastric administration of rotenone in mice, PLoS One 5 (2010) Article ID 8762 (10 pages); https://doi.org/10.1371/journal.pone.000876210.1371/journal.pone.0008762280824220098733
- 28. Z. Liu, T. Li, D. Yang and W. W. Smith, Curcumin protects against rotenone-induced neurotoxicity in cell and drosophila models of Parkinson’s disease, Adv. Park. Dis. 2 (2013) 18–27; https://doi.org/10.4236/apd.2013.2100410.4236/apd.2013.21004
- 29. W. S. Choi, R. D. Palmiter and Z. Xia, Loss of mitochondrial complex I activity potentiates dopa-mine neuron death induced by microtubule dysfunction in a Parkinson’s disease model, J. Cell Biol. 192 (2011) 873–882; https://doi.org/10.1083/jcb.20100913210.1083/jcb.201009132305182021383081
- 30. N. Xiong, J. Xiong, M. Jia, L. Liu, X. Zhang, Z. Chen, J. Huang, Z. Zhang, L. Hou, Z. Luo, D. Ghoorah, Z. Lin and T. Wang, The role of autophagy in Parkinson’s disease: Rotenone-based modeling, Behav. Brain Funct. 9 (2013) 13–25; https://doi.org/10.1186/1744-9081-9-1310.1186/1744-9081-9-13360641123497442
- 31. W. Le, P. Sayana and J. Jankovic, Animal models of Parkinson’s disease: A Gateway to therapeutics?, Neurotherapeutics 11 (2014) 92–110; https://doi.org/10.1007/s13311-013-0234-110.1007/s13311-013-0234-1389949324158912
- 32. F. Cicchetti, J. Drouin-Ouellet and R. E. Gross, Environmental toxins and Parkinson’s disease: what have we learned from pesticide-induced animal models?, Trends Pharmacol. Sci. 30 (2009) 475–483; https://doi.org/10.1016/j.tips.2009.06.00510.1016/j.tips.2009.06.00519729209
- 33. M. Inden, Y. Kitamura, M. Abe, A. Tamaki, K. Takata and T. Taniguchi, Parkinsonian rotenone mouse model: Reevaluation of long-term administration of rotenone in C57BL/6 mice, Biol. Pharm. Bull. 34 (2011) 92–96; https://doi.org/10.1248/bpb.34.9210.1248/bpb.34.9221212524
- 34. M. Gómez-Chavarín, R. Díaz-Pérez, R. Morales-Espinosa, J. Fernández-Ruiz, G. Roldán-Roldán, C. Torner and C. A. Torner Aguilar, Developmental effects of rotenone pesticide on rat nigrostriatal dopaminergic system, Salud Mental 36 (2013) 1–8; https://doi.org/10.17711/SM.0185-3325.2013.00110.17711/SM.0185-3325.2013.001
- 35. N. Kanwar, R. Bhandari, A. Kuhad and V. R. Sinha, Polycaprolactone-based neurotherapeutic delivery of rasagiline targeting behavioral and biochemical deficits in Parkinson’s disease, Drug Deliv. Transl. Res. 9 (2019) 891–905; https://doi.org/10.1007/s13346-019-00625-210.1007/s13346-019-00625-230877626
- 36. M. Fernández, E. Barcia, A. Fernández-Carballido, L. Garcia, K. Slowing and S. Negro, Controlled release of rasagiline mesylate promotes neuroprotection in a rotenone-induced advanced model of Parkinson’s disease, Int. J. Pharm. 438 (2012) 266–278; https://doi.org/10.1016/j.ijpharm.2012.09.02410.1016/j.ijpharm.2012.09.02422985602
- 37. E. Barcia, L. Boeva, L. García-García, K. Slowing, A. Fernández-Carballido, Y. Casanova and S. Negro, Nanotechnology-based drug delivery of ropinirole for Parkinson’s disease, Drug Deliv. 24 (2017) 1112–1123; https://doi.org/10.1080/10717544.2017.135986210.1080/10717544.2017.1359862824117728782388
- 38. S. Negro, L. Boeva, K. Slowing, A. Fernandez-Carballido, L. Garcia-García and E. Barcia, Efficacy of ropinirole-loaded PLGA microspheres for the reversion of rotenone-induced Parkinsonism, Curr. Pharm. Des. 23 (2016) 3423–3431; https://doi.org/10.2174/138161282266616092814534610.2174/138161282266616092814534627779080
- 39. P. Patel, A. Pol, S. More, D. R. Kalaria, Y. N. Kalia and V. B. Patravale, Colloidal soft nanocarrier for transdermal delivery of dopamine agonist: Ex vivo and in vivo evaluation, J. Biomed. Nanotechnol. 10 (2014) 3291–3303; https://doi.org/10.1166/jbn.2014.185710.1166/jbn.2014.185726000388
- 40. S. Palle and P. Neerati, Improved neuroprotective effect of resveratrol nanoparticles as evinced by abrogation of rotenone-induced behavioral deficits and oxidative and mitochondrial dysfunctions in rat model of Parkinson’s disease, Naunyn-Schmiedeberg´s Arch. Pharmacol. 391 (2018) 445–453; https://doi.org/10.1007/s00210-018-1474-810.1007/s00210-018-1474-829411055
- 41. P. Kundu, M. Das, K. Tripathy and S. K. Sahoo, Delivery of dual drug loaded lipid based nanoparticles across the blood−brain barrier impart enhanced neuroprotection in a rotenone induced mouse model of Parkinson’s disease, ACS Chem. Neurosci. 7 (2016) 1658–1670; https://doi.org/10.1021/acschemneuro.6b0020710.1021/acschemneuro.6b0020727642670
- 42. Q. Yang, F. Fang, Y. Li and Y. Ye, Neuroprotective effects of the nanoparticles of zinc sapogenin from seeds of Camellia oleifera, J. Nanosci. Nanotechnol. 17 (2017) 2394–2400; https://doi.org/10.1166/jnn.2017.1343610.1166/jnn.2017.13436
- 43. E. M. Normando, B. M. Davis, L. De Groef, S. Nizari, L. A. Turner, N. Ravindran, M. Pahlitzsch, J. Brenton, G. Malaguarnera, L. Guo, S. Somavarapu and M. F. Cordeiro, The retina as an early biomarker of neurodegeneration in a rotenone-induced model of Parkinson’s disease: Evidence for a neuroprotective effect of rosiglitazone in the eye and brain, Acta Neuropathol. Commun. 4 (2016) 1–15; https://doi.org/10.1186/s40478-016-0346-z10.1186/s40478-016-0346-z
- 44. R. Nistico, B. Mehdawy, S. Piccirilli and N. Mercuri, Paraquat- and rotenone-induced models of Parkinson’s disease, Int. J. Immunopathol. Pharmacol. 24 (2011) 313–322; https://doi.org/10.1177/03946320110240020510.1177/039463201102400205
- 45. A. Barbeau, L. Dallaire, N. T. Buu, J. Poirier and E. Rucinska, Comparative behavioral, biochemical and pigmentary effects of MPTP, MPP+ and paraquat in rana pipiens, Life Sci. 37 (1985) 1529–1538; https://doi.org/10.1016/0024-3205(85)90185-710.1016/0024-3205(85)90185-7
- 46. P. M. Rappold, M. Cui, A. S. Chesser, J. Tibbett, J. C. Grima, L. Duan, N. Sen, J. A. Javitch and K. Tieua, Paraquat neurotoxicity is mediated by the dopamine transporter and organic cation transporter-3, Proc. Natl. Acad. Sci. USA 108 (2011) 20766–20771; https://doi.org/10.1073/pnas.111514110810.1073/pnas.1115141108
- 47. K. Shimizu, K. Ohtaki, K. Matsubara, K. Aoyama, T. Uezono, O. Saito, M. Suno, K. Ogawa, N. Hayase, K. Kimura and H. Shiono, Carrier-mediated processes in blood-brain barrier penetration and neural uptake of paraquat, Brain Res. 906 (2001) 135–142; https://doi.org/10.1016/S0006-8993(01)02577-X10.1016/S0006-8993(01)02577-X
- 48. C. Berry, C. La Vecchia and P. Nicotera, Cell death and differentiation – Paraquat and Parkinson’s disease, Cell Death Differ. 17 (2010) 1115–1125; https://doi.org/10.1038/cdd.2009.21710.1038/cdd.2009.21720094060
- 49. S. Bastías-Candia, J. M. Zolezzi and N. C. Inestrosa, Revisiting the paraquat-induced sporadic Parkinson’s disease-like model, Mol. Neurobiol. 56 (2019) 1044–1055; https://doi.org/10.1007/s12035-018-1148-z10.1007/s12035-018-1148-z29862459
- 50. J. Peng, X. O. Mao, F. F. Stevenson, M. Hsu and J. K. Andersen, The herbicide paraquat induces dopaminergic nigral apoptosis through sustained activation of the JNK pathway, J. Biol. Chem. 279 (2004) 32626–32632; https://doi.org/10.1074/jbc.M40459620010.1074/jbc.M40459620015155744
- 51. K. Ossowska, J. Wardas, M. Śmiałowska, K. Kuter, T. Lenda, J. M. Wierońska, B. Ziȩba, P. Nowak, J. Dąbrowska, A. Bortel, A. Kwieciński and S. Wolfarth, A slowly developing dysfunction of dopaminergic nigrostriatal neurons induced by long-term paraquat administration in rats: An animal model of preclinical stages of Parkinson’s disease?, Eur. J. Neurosci. 22 (2005) 1294–1304; https://doi.org/10.1111/j.1460-9568.2005.04301.x10.1111/j.1460-9568.2005.04301.x16190885
- 52. K. Muthukumaran, S. Leahy, K. Harrison, M. Sikorska, J. K. Sandhu, J. Cohen, C. Keshan, D. Lopatin, H. Miller, H. Borowy-Borowski, P. Lanthier, S. Weinstock and S. Pandey, Orally delivered water soluble coenzyme Q10 (Ubisol-Q10) blocks on-going neurodegeneration in rats exposed to paraquat: Potential for therapeutic application in Parkinson’s disease, BMC Neurosci. 15 (2014) 21–32; https://doi.org/10.1186/1471-2202-15-2110.1186/1471-2202-15-21
- 53. A. L. McCormack, J. G. Atienza, J. W. Langston and D. A. Di Monte, Decreased susceptibility to oxidative stress underlies the resistance of specific dopaminergic cell populations to paraquat-induced degeneration, Neuroscience 141 (2006) 929–937; https://doi.org/10.1016/j.neuroscience.2006.03.06910.1016/j.neuroscience.2006.03.069
- 54. R. M. Lopachin and T. Gavin, Response to “Paraquat: The red herring of Parkinson’s disease research,” Toxicol. Sci. 103 (2008) 219–221; https://doi.org/10.1093/toxsci/kfn02810.1093/toxsci/kfn028
- 55. J. R. Richardson, Y. Quan, T. B. Sherer, J. T. Greenamyre and G. W. Miller, Paraquat neurotoxicity is distinct from that of MPTP and rotenone, Toxicol. Sci. 88 (2005) 193–201; https://doi.org/10.1093/toxsci/kfi30410.1093/toxsci/kfi304
- 56. M. Thiruchelvam, E. K. Richfield, R. B. Baggs, A. W. Tank and D. A. Cory-Slechta, The nigrostriatal dopaminergic system as a preferential target of repeated exposures to combined paraquat and maneb: Implications for Parkinson’s disease, J. Neurosci. 20 (2000) 9207–9214; https://doi.org/10.1523/jneurosci.20-24-09207.200010.1523/JNEUROSCI.20-24-09207.2000
- 57. M. Thiruchelvam, E. K. Richfield, B. M. Goodman, R. B. Baggs and D. A. Cory-Slechta, Developmental exposure to the pesticides paraquat and maneb and the Parkinson’s disease phenotype, Neurotoxicology 23 (2002) 621–633; https://doi.org/10.1016/S0161-813X(02)00092-X10.1016/S0161-813X(02)00092-X
- 58. S. Srivastav, B. G. Anand, M. Fatima, K. P. Prajapati, S. S. Yadav, K. Kar and A. C. Mondal, Piperine-coated gold nanoparticles alleviate paraquat-induced neurotoxicity in Drosophila melanogaster, ACS Chem. Neurosci. 11 (2020) 3772–3785; https://doi.org/10.1021/acschemneuro.0c0036610.1021/acschemneuro.0c0036633125229
- 59. A. O. Correia, A. A. P. Cruz, A. T. R. de Aquino, J. R. G. Diniz, K. B. F. Santana and P. I. M. Cidade, J. D. Peixoto, D. L. Lucetti, M. E. P. Nobre, G. M. P. da Cruz, K. R. T. Neves and G. S. de Barros Viana, Neuroprotective effects of piperine, an alkaloid from the Piper genus, on the Parkinson’s disease model in rats, J. Neurol. Ther. 1 (2015) 1−8; https://doi.org/10.14312/2397-1304.2015-110.14312/2397-1304.2015-1
- 60. H. Liu, R. Luo, X. Chen, J. Liu, Y. Bi, L. Zheng and X. Wu, Tissue distribution profiles of three antiparkinsonian alkaloids from Piper longum L. in rats determined by liquid chromatography-tandem mass spectrometry, J. Chromatogr. B 928 (2013) 78−82; https://doi.org/10.1016/j.jchromb.2013.03.02110.1016/j.jchromb.2013.03.02123603295
- 61. S. Bastías-Candia, M. Di Benedetto, C. D’Addario, S. Candeletti and P. Romualdi, Combined exposure to agriculture pesticides, paraquat and maneb, induces alterations in the N/OFQ-NOPr and PDYN/KOPr systems in rats: Relevance to sporadic Parkinson’s disease, Environ. Toxicol. 30 (2015) 656–663; https://doi.org/10.1002/tox.2194310.1002/tox.2194324376148
- 62. R. M. Miller, G. L. Kiser, T. Kaysser-Kranich, C. Casaceli, E. Colla, M. K. Lee, C. Palaniappan and H. J. Federoff, Wild-type and mutant α-synuclein induce a multi-component gene expression profile consistent with shared pathophysiology in different transgenic mouse models of PD, Exp. Neurol. 204 (2007) 421–432; https://doi.org/10.1016/j.expneurol.2006.12.00510.1016/j.expneurol.2006.12.005
- 63. L. C. Grandi, G. Di Giovanni and S. Galati, Animal models of early-stage Parkinson’s disease and acute dopamine deficiency to study compensatory neurodegenerative mechanisms, J. Neurosci. Methods 308 (2018) 205–218; https://doi.org/10.1016/j.jneumeth.2018.08.01210.1016/j.jneumeth.2018.08.012
- 64. J. Langston, P. Ballard, J. Tetrud and I. Irwin, Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis, Science 219 (1983) 979–980; https://doi.org/10.1126/science.682356110.1126/science.6823561
- 65. M. H. Yan, X. Wang and X. Zhu, Mitochondrial defects and oxidative stress in Alzheimer disease and Parkinson disease, Free Radic. Biol. Med. 62 (2013) 90–101; https://doi.org/10.1016/j.freeradbiomed.2012.11.01410.1016/j.freeradbiomed.2012.11.014
- 66. J. Bové and C. Perier, Neurotoxin-based models of Parkinson’s disease, Neuroscience 211 (2012) 51–76; https://doi.org/10.1016/j.neuroscience.2011.10.05710.1016/j.neuroscience.2011.10.057
- 67. L. K. Klaidman, J. D. Adams, A. C. Leung, S. Sam Kim and E. Cadenas, Redox cycling of MPP+: Evidence for a new mechanism involving hydride transfer with xanthine oxidase, aldehyde dehydrogenase, and lipoamide dehydrogenase, Free Radic. Biol. Med. 15 (1993) 169–179; https://doi.org/10.1016/0891-5849(93)90056-Z10.1016/0891-5849(93)90056-Z
- 68. V. Jackson-Lewis, M. Jakowec, R. E. Burke and S. Przedborski, Time course and morphology of dopaminergic neuronal death caused by the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, Neurodegeneration 4 (1995) 257–269; https://doi.org/10.1016/1055-8330(95)90015-210.1016/1055-8330(95)90015-2
- 69. J. Blesa, S. Phani, V. Jackson-Lewis and S. Przedborski, Classic and new animal models of Parkinson’s disease, J. Biomed. Biotechnol. 2012 (2012) Article ID 845618; https://doi.org/10.1155/2012/84561810.1155/2012/845618332150022536024
- 70. S. Duty and P. Jenner, Animal models of Parkinson’s disease: A source of novel treatments and clues to the cause of the disease, Br. J. Pharmacol. 164 (2011) 1357–1391; https://doi.org/10.1111/j.1476-5381.2011.01426.x10.1111/j.1476-5381.2011.01426.x322976621486284
- 71. V. Jackson-Lewis and S. Przedborski, Protocol for the MPTP mouse model of Parkinson’s disease, Nat. Protoc. 2 (2007) 141–151; https://doi.org/10.1038/nprot.2006.34210.1038/nprot.2006.34217401348
- 72. D. T. Stephenson, M. D. Meglasson, M. A. Connell, M. A. Childs, E. Hajos-Korcsok and M. E. Emborg, The effects of a selective dopamine D2 receptor agonist on behavioral and pathological outcome in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated squirrel monkeys, J. Pharmacol. Exp. Ther. 314 (2005) 1257–1266; https://doi.org/10.1124/jpet.105.08737910.1124/jpet.105.087379
- 73. J. S. Schneider and C. J. Kovelowski, Chronic exposure to low doses of MPTP. I. Cognitive deficits in motor asymptomatic monkeys, Brain Res. 519 (1990) 122–128; https://doi.org/10.1016/0006-8993(90)90069-N10.1016/0006-8993(90)90069-N
- 74. D. S. Goldstein, S. T. Li, C. Holmes and K. Bankiewicz, Sympathetic innervation in the 1-methyl--4-phenyl-1,2,3,6-tetrahydropyridine primate model of Parkinson’s disease, J. Pharmacol. Exp. Ther. 306 (2003) 855–860; https://doi.org/10.1124/jpet.103.05171410.1124/jpet.103.05171412805479
- 75. E. Garbayo, E. Ansorena, H. Lana, M. del M. Carmona-Abellan, I. Marcilla, J. L. Lanciego, M. R. Luquin and M. J. Blanco-Prieto, Brain delivery of microencapsulated GDNF induces functional and structural recovery in parkinsonian monkeys, Biomaterials. 110 (2016) 11–23; https://doi.org/10.1016/j.biomaterials.2016.09.01510.1016/j.biomaterials.2016.09.01527697668
- 76. F. Blandini and M. T. Armentero, Animal models of Parkinson’s disease, FEBS J. 279 (2012) 1156–1166; https://doi.org/10.1111/j.1742-4658.2012.08491.x10.1111/j.1742-4658.2012.08491.x22251459
- 77. S. Sánchez-Iglesias, P. Rey, E. Méndez-Álvarez, J. L. Labandeira-García and R. Soto-Otero, Time-course of brain oxidative damage caused by intrastriatal administration of 6-hydroxydopamine in a rat model of Parkinson’s disease, Neurochem. Res. 32 (2007) 99–105; https://doi.org/10.1007/s11064-006-9232-610.1007/s11064-006-9232-617160721
- 78. D. Hernandez-Baltazar, L. M. Zavala-Flores and A. Villanueva-Olivo, The 6-hydroxydopamine model and parkinsonian pathophysiology: Novel findings in an older model, Neurología (English Ed.) 32 (2017) 533–539; https://doi.org/10.1016/j.nrleng.2015.06.01910.1016/j.nrleng.2015.06.019
- 79. J. L. Venero, M. Revuelta, J. Cano and A. Machado, Time course changes in the dopaminergic nigrostriatal system following transection of the medial forebrain bundle: detection of oxidatively modified proteins in substantia nigra, J. Neurochem. 68 (2002) 2458–2468; https://doi.org/10.1046/j.1471-4159.1997.68062458.x10.1046/j.1471-4159.1997.68062458.x9166740
- 80. D. Stanic, D. I. Finkelstein, D. W. Bourke, J. Drago and M. K. Horne, Time course of striatal re-inner vation following lesions of dopaminergic SNpc neurons of the rat, Eur. J. Neurosci. 18 (2003) 1175–1188; https://doi.org/10.1046/j.1460-9568.2003.02800.x10.1046/j.1460-9568.2003.02800.x12956716
- 81. M. Decressac, B. Mattsson and A. Björklund, Comparison of the behavioural and histological characteristics of the 6-OHDA and α-synuclein rat models of Parkinson’s disease, Exp. Neurol. 235 (2012) 306–315; https://doi.org/10.1016/j.expneurol.2012.02.01210.1016/j.expneurol.2012.02.01222394547
- 82. D. Hernandez-Baltazar, M. E. Mendoza-Garrido and D. Martinez-Fong, Activation of GSK-3β and caspase-3 occurs in nigral dopamine neurons during the development of apoptosis activated by a striatal injection of 6-hydroxydopamine, PLoS One 8 (2013) e70951 (13 pages); https://doi.org/10.1371/journal.pone.007095110.1371/journal.pone.0070951
- 83. G. Mercanti, G. Bazzu and P. Giusti, A 6-hydroxydopamine in vivo model of Parkinson’s disease, Methods Mol. Biol. 846 (2012) 355–364; https://doi.org/10.1007/978-1-61779-536-7_3010.1007/978-1-61779-536-7_30
- 84. K. Sakai and D. M. Gash, Effect of bilateral 6-OHDA lesions of the substantia nigra on locomotor activity in the rat, Brain Res. 633 (1994) 144–150; https://doi.org/10.1016/0006-8993(94)91533-410.1016/0006-8993(94)91533-4
- 85. M. Healy-Stoffel, S. O. Ahmad, J. A. Stanford and B. Levant, A novel use of combined tyrosine hydroxylase and silver nucleolar staining to determine the effects of a unilateral intrastriatal 6-hydroxydopamine lesion in the substantia nigra: A stereological study, J. Neurosci. Methods 210 (2012) 187–194; https://doi.org/10.1016/j.jneumeth.2012.07.01310.1016/j.jneumeth.2012.07.013344328122850559
- 86. J. T. Da Rocha, S. Pinton, B. M. Gai and C. W. Nogueira, Diphenyl diselenide reduces mechanical and thermal nociceptive behavioral responses after unilateral intrastriatal administration of 6-hydroxydopamine in rats, Biol. Trace Elem. Res. 154 (2013) 372–378; https://doi.org/10.1007/s12011-013-9736-210.1007/s12011-013-9736-223821314
- 87. A. Heuer, G. A. Smith, M. J. Lelos, E. L. Lane and S. B. Dunnett, Unilateral nigrostriatal 6-hydroxydopamine lesions in mice I: Motor impairments identify extent of dopamine depletion at three different lesion sites, Behav. Brain Res. 228 (2012) 30–43; https://doi.org/10.1016/j.bbr.2011.11.02710.1016/j.bbr.2011.11.02722146593
- 88. D. Kirik, C. Rosenblad and A. Björklund, Characterization of behavioral and neurodegenerative changes following partial lesions of the nigrostriatal dopamine system induced by intrastriatal 6-hydroxydopamine in the rat, Exp. Neurol. 152 (1998) 259–277; https://doi.org/10.1006/exnr.1998.684810.1006/exnr.1998.68489710526
- 89. H. S. Lindgren, M. J. Lelos and S. B. Dunnett, Do alpha-synuclein vector injections provide a better model of Parkinson’s disease than the classic 6-hydroxydopamine model?, Exp. Neurol. 237 (2012) 36–42; https://doi.org/10.1016/j.expneurol.2012.05.02210.1016/j.expneurol.2012.05.02222727767
- 90. P. Qiu, H. Wang, Y. Tai, L. Chen, E. Huang, C. Liu and X. Yang, Protective effect of alpha-synuclein knockdown on methamphetamine-induced neurotoxicity in dopaminergic neurons, Neural Regen. Res. 9 (2014) 951–958; https://doi.org/10.4103/1673-5374.13314610.4103/1673-5374.133146414621625206917
- 91. Q. He, J. B. Koprich, Y. Wang, W. B. Yu, B. G. Xiao, J. M. Brotchie and J. Wang, Treatment with trehalose prevents behavioral and neurochemical deficits produced in an AAV α-synuclein rat model of Parkinson’s disease, Mol. Neurobiol. 53 (2016) 2258–2268; https://doi.org/10.1007/s12035-015-9173-710.1007/s12035-015-9173-725972237
- 92. L. F. Razgado-Hernandez, A. J. Espadas-Alvarez, P. Reyna-Velazquez, A. Sierra-Sanchez, V. Anaya-Martinez, I. Jimenez-Estrada, M. J. Bannon, D. Martinez-Fong and J. Aceves-Ruiz, The transfection of BDNF to dopamine neurons potentiates the effect of dopamine D3 receptor agonist recovering the striatal innervation, dendritic spines and motor behavior in an aged rat model of Parkinson’s disease, PLoS One 10 (2015) e0117391 (25 pages); https://doi.org/10.1371/journal.pone.011739110.1371/journal.pone.0117391433286125693197
- 93. R. Pahuja, K. Seth, A. Shukla, R. K. Shukla, P. Bhatnagar, L. K. S. Chauhan, P. N. Saxena, J. Arun, B. P. Chaudhari, D. K. Patel, S. P. Singh, R. Shukla, V. K. Khanna, P. Kumar, R. K. Chaturvedi and K. C. Gupta, Trans-blood brain barrier delivery of dopamine-loaded nanoparticles reverses functional deficits in parkinsonian rats, ACS Nano 9 (2015) 4850–4871; https://doi.org/10.1021/nn506408v10.1021/nn506408v25825926
- 94. C. Bishop, J. L. Taylor, D. M. Kuhn, K. L. Eskow, J. Y. Park and P. D. Walker, MDMA and fenfluramine reduce L-DOPA-induced dyskinesia via indirect 5-HT1A receptor stimulation, Eur. J. Neurosci. 23 (2006) 2669–2676; https://doi.org/10.1111/j.1460-9568.2006.04790.x10.1111/j.1460-9568.2006.04790.x16817869
- 95. T. Ren, X. Yang, N. Wu, Y. Cai, Z. Liu and W. Yuan, Sustained-release formulation of levodopa methyl ester/benserazide for prolonged suppressing dyskinesia expression in 6-OHDA-leisoned rats, Neurosci. Lett. 502 (2011) 117–122; https://doi.org/10.1016/j.neulet.2011.07.04210.1016/j.neulet.2011.07.04221835223
- 96. A. Azeem, S. Talegaonkar, L. M. Negi, F. J. Ahmad, R. K. Khar and Z. Iqbal, Oil based nanocarrier system for transdermal delivery of ropinirole: A mechanistic, pharmacokinetic and biochemical investigation, Int. J. Pharm. 422 (2012) 436–444; https://doi.org/10.1016/j.ijpharm.2011.10.03910.1016/j.ijpharm.2011.10.03922057087
- 97. N. Giladi, B. Boroojerdi, A. D. Korczyn, D. J. Burn, C. E. Clarke and A. H. V. Schapira, Rotigotine transdermal patch in early Parkinson’s disease: A randomized, double-blind, controlled study versus placebo and ropinirole, Mov. Disord. 22 (2007) 2398–2404; https://doi.org/10.1002/mds.2174110.1002/mds.2174117935234
- 98. O. K. Sujith and C. Lane, Therapeutic options for continuous dopaminergic stimulation in Parkinson’s disease, Ther. Adv. Neurol. Disord. 2 (2009) 105–113; https://doi.org/10.1177/175628560810137810.1177/1756285608101378300262121180645
- 99. A. Wang, L. Wang, K. Sun, W. Liu, C. Sha and Y. Li, Preparation of rotigotine-loaded microspheres and their combination use with L-DOPA to modify dyskinesias in 6-OHDA-lesioned rats, Pharm. Res. 29 (2012) 2367–2376; https://doi.org/10.1007/s11095-012-0762-010.1007/s11095-012-0762-022549738
- 100. M. J. Tsai, Y. Bin Huang, P. C. Wu, Y. S. Fu, Y. R. Kao, J. Y. Fang and Y. H. Tsai, Oral apomorphine delivery from solid lipid nanoparticles with different monostearate emulsifiers: Pharmacokinetic and behavioral evaluations, J. Pharm. Sci. 100 (2011) 547–557; https://doi.org/10.1002/jps.2228510.1002/jps.2228520740670
- 101. E. Garbayo, E. Ansorena, J. L. Lanciego, M. J. Blanco-Prieto and M. S. Aymerich, Long-term neuro-protection and neurorestoration by glial cell-derived neurotrophic factor microspheres for the treatment of Parkinson’s disease, Mov. Disord. 26 (2011) 1943–1947; https://doi.org/10.1002/mds.2379310.1002/mds.2379321661048
- 102. P. H. Yang, J. X. Zhu, Y. D. Huang, X. Y. Zhang, P. Lei, A. I. Bush, Q. Xiang, Z. J. Su and Q. H. Zhang, Human basic fibroblast growth factor inhibits tau phosphorylation via the PI3K/Akt-GSK3β signaling pathway in a 6-hydroxydopamine-induced model of Parkinson’s disease, Neuro degener. Dis. 16 (2016) 357–369; https://doi.org/10.1159/00044587110.1159/00044587127228974
- 103. Y. Z. Zhao, X. Li, C. T. Lu, M. Lin, L. J. Chen, Q. Xiang, M. Zhang, R. R. Jin, X. Jiang, X. T. Shen, X. K. Li and J. Cai, Gelatin nanostructured lipid carriers-mediated intranasal delivery of basic fibroblast growth factor enhances functional recovery in hemiparkinsonian rats, Nanomed. Nanotechnol. Biol. Med. 10 (2014) 755–764; https://doi.org/10.1016/j.nano.2013.10.00910.1016/j.nano.2013.10.00924200526
- 104. E. Herrán, J. A. Ruiz-Ortega, A. Aristieta, M. Igartua, C. Requejo, J. V. Lafuente, L. Ugedo, J. L. Pedraz and R. M. Hernández, In vivo administration of VEGF- and GDNF-releasing biodegradable polymeric microspheres in a severe lesion model of Parkinson’s disease, Eur. J. Pharm. Biopharm. 85 (2013) 1183–1190; https://doi.org/10.1016/j.ejpb.2013.03.03410.1016/j.ejpb.2013.03.03423639739