Have a personal or library account? Click to login
Application of neurotoxin- and pesticide-induced animal models of Parkinson’s disease in the evaluation of new drug delivery systems Cover

Application of neurotoxin- and pesticide-induced animal models of Parkinson’s disease in the evaluation of new drug delivery systems

Open Access
|Aug 2021

References

  1. 1. J. M. Beitz, Parkinson´s disease a review, Front. Biosci. 6 (2014) 65–74; https://doi.org/10.2741/S41510.2741/S415
  2. 2. D. M. Radhakrishnan and V. Goyal, Parkinson’s disease: A review, Neurol. India 66 (2018) 26–35; https://doi.org/10.4103/0028-3886.22645110.4103/0028-3886.226451
  3. 3. L. V. Kalia and A. E. Lang, Parkinson’s disease, Lancet 386 (2015) 896–912; https://doi.org/10.1016/S0140-6736(14)61393-310.1016/S0140-6736(14)61393-3
  4. 4. F. J. Carod-Artal, H. M. Mesquita, S. Ziomkowski and P. Martinez-Martin, Burden and health-related quality of life among caregivers of Brazilian Parkinson’s disease patients, Park. Relat. Disord. 19 (2013) 943–948; https://doi.org/10.1016/j.parkreldis.2013.06.00510.1016/j.parkreldis.2013.06.005
  5. 5. N. L. G. del Rey, A. Quiroga-Varela, E. Garbayo, I. Carballo-Carbajal, R. Fernández-Santiago, M. H. G. Monje, I. Trigo-Damas, M. J. Blanco-Prieto and J. Blesa, Advances in Parkinson’s disease: 200 years later, Front. Neuroanat. 12 (2018) Article ID 113 (14 pages); https://doi.org/10.3389/fnana.2018.0011310.3389/fnana.2018.00113
  6. 6. K. A. Jellinger, Accuracy of clinical diagnosis of Parkinson disease: A systematic review and meta-analysis, Neurology 87 (2016) 237–238; https://doi.org/10.1212/WNL.000000000000287610.1212/WNL.0000000000002876
  7. 7. A. Iranzo, E. Tolosa, E. Gelpi, J. L. Molinuevo, F. Valldeoriola, M. Serradell, R. Sanchez-Valle, I. Vilaseca, F. Lomeña, D. Vilas, A. LLadó, C. Gaig and J. Santamaria, Neurodegenerative disease status and post-mortem pathology in idiopathic rapid-eye-movement sleep behaviour disorder: An observational cohort study, Lancet Neurol. 12 (2013) 443–453; https://doi.org/10.1016/S1474-4422(13)70056-510.1016/S1474-4422(13)70056-5
  8. 8. J. M. Miyasaki, W. Martin, O. Suchowersky, W. J. Weiner and A. E. Lang, Practice parameter: Initiation of treatment for Parkinson’s disease: An evidence-based review: Report of the quality standards subcommittee of the American Academy of Neurology, Neurology 58 (2002) 11–17; https://doi.org/10.1212/WNL.58.1.1110.1212/WNL.58.1.1111781398
  9. 9. K. Seppi, D. Weintraub, M. Coelho, S. Perez-Lloret, S. H. Fox, R. Katzenschlager, E. M. Hametner, W. Poewe, O. Rascol, C. G. Goetz and C. Sampaio, The Movement Disorder Society disease evidence-based medicine review update: Treatments for the non-motor symptoms of Parkinson’s, Mov. Disord. 26 (2011) 42–80; https://doi.org/10.1002/mds.2388410.1002/mds.23884402014522021174
  10. 10. B. S. Connolly and A. E. Lang, Pharmacological treatment of Parkinson disease: A review, JAMA 311 (2014) 1670–1683; https://doi.org/10.1001/jama.2014.365410.1001/jama.2014.365424756517
  11. 11. J. M. Hatcher, K. D. Pennell and G. W. Miller, Parkinson’s disease and pesticides: a toxicological perspective, Trends Pharmacol. Sci. 29 (2008) 322–329; https://doi.org/10.1016/j.tips.2008.03.00710.1016/j.tips.2008.03.007568384618453001
  12. 12. M. Van der Mark, M. Brouwer, H. Kromhout, P. Nijssen, A. Huss and R. Vermeulen, Is pesticide use related to Parkinson disease? Some clues to heterogeneity in study results, Environ. Health Perspect. 120 (2012) 340–347; https://doi.org/10.1289/ehp.110388110.1289/ehp.1103881329535022389202
  13. 13. D. Belvisi, R. Pellicciari, G. Fabbrini, M. Tinazzi, A. Berardelli and G. Defazio, Modifiable risk and protective factors in disease development, progression and clinical subtypes of Parkinson’s disease: What do prospective studies suggest?, Neurobiol. Dis. 134 (2020) 1–10; https://doi.org/10.1016/j.nbd.2019.10467110.1016/j.nbd.2019.10467131706021
  14. 14. F. Tuchsen and A. Astrup Jensen, Agricultural work and the risk of Parkinson’s disease in Denmark, 1981-1993, Scand. J. Work Environ. Health 26 (2000) 359–362; https://doi.org/10.5271/sjweh.55410.5271/sjweh.55410994803
  15. 15. H. Petrovitch, G. Webster Ross, R. D. Abbott, W. T. Sanderson, D. S. Sharp, C. M. Tanner, K. H. Masaki, P. L. Blanchette, J. S. Popper, D. Foley, L. Launer and L. R. White, Plantation work and risk of Parkinson disease in a population-based longitudinal study, Arch. Neurol. 59 (2002) 1787–1792; https://doi.org/10.1001/archneur.59.11.178710.1001/archneur.59.11.178712433267
  16. 16. I. Baldi, P. Lebailly, B. Mohammed-Brahim, L. Letenneur, J. F. Dartigues and P. Brochard, Neuro-degenerative diseases and exposure to pesticides in the elderly, Am. J. Epidemiol. 157 (2003) 409–414; https://doi.org/10.1093/aje/kwf216.A
  17. 17. A. Ascherio, H. Chen, M. G. Weisskopf, E. O’Reilly, M. L. McCullough, E. E. Calle, M. A. Schwarzschild and M. J. Thun, Pesticide exposure and risk for Parkinson’s disease, Ann. Neurol. 60 (2006) 197–203; https://doi.org/10.1002/ana.2090410.1002/ana.2090416802290
  18. 18. M. G. Weisskopf, P. Knekt, E. J. O’Reilly, J. Lyytinen, A. Reunanen, F. Laden, L. Altshul and A. Ascherio, Persistent organochlorine pesticides in serum and risk of Parkinson disease, Neurology 74 (2010) 1055–1061; https://doi.org/10.1212/WNL.0b013e3181d76a9310.1212/WNL.0b013e3181d76a93284810520350979
  19. 19. A. L. Feldman, A. L. V. Johansson, G. Nise, M. Gatz, N. L. Pedersen and K. Wirdefeldt, Occupational exposure in Parkinsonian disorders: A 43-year prospective cohort study in men, Park. Relat. Disord. 17 (2011) 677–682; https://doi.org/10.1016/j.parkreldis.2011.06.00910.1016/j.parkreldis.2011.06.009320047121733735
  20. 20. L. Kenborg, C. F. Lassen, F. Lander and J. H. Olsen, Parkinson’s disease among gardeners exposed to pesticides – a Danish cohort study, Scand. J. Work Environ. Health 38 (2012) 65–69; https://doi.org/10.5271/sjweh.317610.5271/sjweh.317621687921
  21. 21. M. Brouwer, T. Koeman, P. A. Van Den Brandt, H. Kromhout, L. J. Schouten, S. Peters, A. Huss and R. Vermeulen, Occupational exposures and Parkinson’s disease mortality in a prospective Dutch cohort, Occup. Environ. Med. 72 (2015) 448–455; https://doi.org/10.1136/oemed-2014-10220910.1136/oemed-2014-10220925713156
  22. 22. P. Mulcahy, S. Walsh, A. Paucard, K. Rea and E. Dowd, Characterisation of a novel model of Parkinson’s disease by intra-striatal infusion of the pesticide rotenone, Neuroscience 181 (2011) 234–242; https://doi.org/10.1016/j.neuroscience.2011.01.03810.1016/j.neuroscience.2011.01.038
  23. 23. R. E. Heikkila, W. J. Nicklas, I. Vyas and R. C. Duvoisin, Dopaminergic toxicity of rotenone and the 1-methyl-4-phenylpyridinium ion after their stereotaxic administration to rats: Implication for the mechanism of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine toxicity, Neurosci. Lett. 59 (1985) 135–140; https://doi.org/10.1016/0304-3940(85)90580-410.1016/0304-3940(85)90580-4
  24. 24. R. J. Ferrante, J. B. Schulz, N. W. Kowall and M. F. Beal, Systemic administration of rotenone produces selective damage in the striatum and globus pallidus, but not in the substantia nigra, Brain Res. 753 (1997) 157–162; https://doi.org/10.1016/S0006-8993(97)00008-510.1016/S0006-8993(97)00008-5
  25. 25. R. Betarbet, T. B. Sherer, G. MacKenzie, M. Garcia-Osuna, A. V. Panov and J. T. Greenamyre, Chronic systemic pesticide exposure reproduces features of Parkinson’s disease, Nat. Neurosci. 3 (2000) 1301–1306; https://doi.org/10.1038/8183410.1038/8183411100151
  26. 26. J. T. Greenamyre, J. R. Cannon, R. Drolet and P. G. Mastroberardino, Lessons from the rotenone model of Parkinson’s disease, Trends Pharmacol. Sci. 31 (2010) 141–142; https://doi.org/10.1016/j.tips.2009.12.00610.1016/j.tips.2009.12.006284699220096940
  27. 27. F. Pan-Montojo, O. Anichtchik, Y. Dening, L. Knels, S. Pursche, R. Jung, S. Jackson, G. Gille, M. G. Spillantini, H. Reichmann and R. H. W. Funk, Progression of Parkinson’s disease pathology is reproduced by intragastric administration of rotenone in mice, PLoS One 5 (2010) Article ID 8762 (10 pages); https://doi.org/10.1371/journal.pone.000876210.1371/journal.pone.0008762280824220098733
  28. 28. Z. Liu, T. Li, D. Yang and W. W. Smith, Curcumin protects against rotenone-induced neurotoxicity in cell and drosophila models of Parkinson’s disease, Adv. Park. Dis. 2 (2013) 18–27; https://doi.org/10.4236/apd.2013.2100410.4236/apd.2013.21004
  29. 29. W. S. Choi, R. D. Palmiter and Z. Xia, Loss of mitochondrial complex I activity potentiates dopa-mine neuron death induced by microtubule dysfunction in a Parkinson’s disease model, J. Cell Biol. 192 (2011) 873–882; https://doi.org/10.1083/jcb.20100913210.1083/jcb.201009132305182021383081
  30. 30. N. Xiong, J. Xiong, M. Jia, L. Liu, X. Zhang, Z. Chen, J. Huang, Z. Zhang, L. Hou, Z. Luo, D. Ghoorah, Z. Lin and T. Wang, The role of autophagy in Parkinson’s disease: Rotenone-based modeling, Behav. Brain Funct. 9 (2013) 13–25; https://doi.org/10.1186/1744-9081-9-1310.1186/1744-9081-9-13360641123497442
  31. 31. W. Le, P. Sayana and J. Jankovic, Animal models of Parkinson’s disease: A Gateway to therapeutics?, Neurotherapeutics 11 (2014) 92–110; https://doi.org/10.1007/s13311-013-0234-110.1007/s13311-013-0234-1389949324158912
  32. 32. F. Cicchetti, J. Drouin-Ouellet and R. E. Gross, Environmental toxins and Parkinson’s disease: what have we learned from pesticide-induced animal models?, Trends Pharmacol. Sci. 30 (2009) 475–483; https://doi.org/10.1016/j.tips.2009.06.00510.1016/j.tips.2009.06.00519729209
  33. 33. M. Inden, Y. Kitamura, M. Abe, A. Tamaki, K. Takata and T. Taniguchi, Parkinsonian rotenone mouse model: Reevaluation of long-term administration of rotenone in C57BL/6 mice, Biol. Pharm. Bull. 34 (2011) 92–96; https://doi.org/10.1248/bpb.34.9210.1248/bpb.34.9221212524
  34. 34. M. Gómez-Chavarín, R. Díaz-Pérez, R. Morales-Espinosa, J. Fernández-Ruiz, G. Roldán-Roldán, C. Torner and C. A. Torner Aguilar, Developmental effects of rotenone pesticide on rat nigrostriatal dopaminergic system, Salud Mental 36 (2013) 1–8; https://doi.org/10.17711/SM.0185-3325.2013.00110.17711/SM.0185-3325.2013.001
  35. 35. N. Kanwar, R. Bhandari, A. Kuhad and V. R. Sinha, Polycaprolactone-based neurotherapeutic delivery of rasagiline targeting behavioral and biochemical deficits in Parkinson’s disease, Drug Deliv. Transl. Res. 9 (2019) 891–905; https://doi.org/10.1007/s13346-019-00625-210.1007/s13346-019-00625-230877626
  36. 36. M. Fernández, E. Barcia, A. Fernández-Carballido, L. Garcia, K. Slowing and S. Negro, Controlled release of rasagiline mesylate promotes neuroprotection in a rotenone-induced advanced model of Parkinson’s disease, Int. J. Pharm. 438 (2012) 266–278; https://doi.org/10.1016/j.ijpharm.2012.09.02410.1016/j.ijpharm.2012.09.02422985602
  37. 37. E. Barcia, L. Boeva, L. García-García, K. Slowing, A. Fernández-Carballido, Y. Casanova and S. Negro, Nanotechnology-based drug delivery of ropinirole for Parkinson’s disease, Drug Deliv. 24 (2017) 1112–1123; https://doi.org/10.1080/10717544.2017.135986210.1080/10717544.2017.1359862824117728782388
  38. 38. S. Negro, L. Boeva, K. Slowing, A. Fernandez-Carballido, L. Garcia-García and E. Barcia, Efficacy of ropinirole-loaded PLGA microspheres for the reversion of rotenone-induced Parkinsonism, Curr. Pharm. Des. 23 (2016) 3423–3431; https://doi.org/10.2174/138161282266616092814534610.2174/138161282266616092814534627779080
  39. 39. P. Patel, A. Pol, S. More, D. R. Kalaria, Y. N. Kalia and V. B. Patravale, Colloidal soft nanocarrier for transdermal delivery of dopamine agonist: Ex vivo and in vivo evaluation, J. Biomed. Nanotechnol. 10 (2014) 3291–3303; https://doi.org/10.1166/jbn.2014.185710.1166/jbn.2014.185726000388
  40. 40. S. Palle and P. Neerati, Improved neuroprotective effect of resveratrol nanoparticles as evinced by abrogation of rotenone-induced behavioral deficits and oxidative and mitochondrial dysfunctions in rat model of Parkinson’s disease, Naunyn-Schmiedeberg´s Arch. Pharmacol. 391 (2018) 445–453; https://doi.org/10.1007/s00210-018-1474-810.1007/s00210-018-1474-829411055
  41. 41. P. Kundu, M. Das, K. Tripathy and S. K. Sahoo, Delivery of dual drug loaded lipid based nanoparticles across the blood−brain barrier impart enhanced neuroprotection in a rotenone induced mouse model of Parkinson’s disease, ACS Chem. Neurosci. 7 (2016) 1658–1670; https://doi.org/10.1021/acschemneuro.6b0020710.1021/acschemneuro.6b0020727642670
  42. 42. Q. Yang, F. Fang, Y. Li and Y. Ye, Neuroprotective effects of the nanoparticles of zinc sapogenin from seeds of Camellia oleifera, J. Nanosci. Nanotechnol. 17 (2017) 2394–2400; https://doi.org/10.1166/jnn.2017.1343610.1166/jnn.2017.13436
  43. 43. E. M. Normando, B. M. Davis, L. De Groef, S. Nizari, L. A. Turner, N. Ravindran, M. Pahlitzsch, J. Brenton, G. Malaguarnera, L. Guo, S. Somavarapu and M. F. Cordeiro, The retina as an early biomarker of neurodegeneration in a rotenone-induced model of Parkinson’s disease: Evidence for a neuroprotective effect of rosiglitazone in the eye and brain, Acta Neuropathol. Commun. 4 (2016) 1–15; https://doi.org/10.1186/s40478-016-0346-z10.1186/s40478-016-0346-z
  44. 44. R. Nistico, B. Mehdawy, S. Piccirilli and N. Mercuri, Paraquat- and rotenone-induced models of Parkinson’s disease, Int. J. Immunopathol. Pharmacol. 24 (2011) 313–322; https://doi.org/10.1177/03946320110240020510.1177/039463201102400205
  45. 45. A. Barbeau, L. Dallaire, N. T. Buu, J. Poirier and E. Rucinska, Comparative behavioral, biochemical and pigmentary effects of MPTP, MPP+ and paraquat in rana pipiens, Life Sci. 37 (1985) 1529–1538; https://doi.org/10.1016/0024-3205(85)90185-710.1016/0024-3205(85)90185-7
  46. 46. P. M. Rappold, M. Cui, A. S. Chesser, J. Tibbett, J. C. Grima, L. Duan, N. Sen, J. A. Javitch and K. Tieua, Paraquat neurotoxicity is mediated by the dopamine transporter and organic cation transporter-3, Proc. Natl. Acad. Sci. USA 108 (2011) 20766–20771; https://doi.org/10.1073/pnas.111514110810.1073/pnas.1115141108
  47. 47. K. Shimizu, K. Ohtaki, K. Matsubara, K. Aoyama, T. Uezono, O. Saito, M. Suno, K. Ogawa, N. Hayase, K. Kimura and H. Shiono, Carrier-mediated processes in blood-brain barrier penetration and neural uptake of paraquat, Brain Res. 906 (2001) 135–142; https://doi.org/10.1016/S0006-8993(01)02577-X10.1016/S0006-8993(01)02577-X
  48. 48. C. Berry, C. La Vecchia and P. Nicotera, Cell death and differentiation – Paraquat and Parkinson’s disease, Cell Death Differ. 17 (2010) 1115–1125; https://doi.org/10.1038/cdd.2009.21710.1038/cdd.2009.21720094060
  49. 49. S. Bastías-Candia, J. M. Zolezzi and N. C. Inestrosa, Revisiting the paraquat-induced sporadic Parkinson’s disease-like model, Mol. Neurobiol. 56 (2019) 1044–1055; https://doi.org/10.1007/s12035-018-1148-z10.1007/s12035-018-1148-z29862459
  50. 50. J. Peng, X. O. Mao, F. F. Stevenson, M. Hsu and J. K. Andersen, The herbicide paraquat induces dopaminergic nigral apoptosis through sustained activation of the JNK pathway, J. Biol. Chem. 279 (2004) 32626–32632; https://doi.org/10.1074/jbc.M40459620010.1074/jbc.M40459620015155744
  51. 51. K. Ossowska, J. Wardas, M. Śmiałowska, K. Kuter, T. Lenda, J. M. Wierońska, B. Ziȩba, P. Nowak, J. Dąbrowska, A. Bortel, A. Kwieciński and S. Wolfarth, A slowly developing dysfunction of dopaminergic nigrostriatal neurons induced by long-term paraquat administration in rats: An animal model of preclinical stages of Parkinson’s disease?, Eur. J. Neurosci. 22 (2005) 1294–1304; https://doi.org/10.1111/j.1460-9568.2005.04301.x10.1111/j.1460-9568.2005.04301.x16190885
  52. 52. K. Muthukumaran, S. Leahy, K. Harrison, M. Sikorska, J. K. Sandhu, J. Cohen, C. Keshan, D. Lopatin, H. Miller, H. Borowy-Borowski, P. Lanthier, S. Weinstock and S. Pandey, Orally delivered water soluble coenzyme Q10 (Ubisol-Q10) blocks on-going neurodegeneration in rats exposed to paraquat: Potential for therapeutic application in Parkinson’s disease, BMC Neurosci. 15 (2014) 21–32; https://doi.org/10.1186/1471-2202-15-2110.1186/1471-2202-15-21
  53. 53. A. L. McCormack, J. G. Atienza, J. W. Langston and D. A. Di Monte, Decreased susceptibility to oxidative stress underlies the resistance of specific dopaminergic cell populations to paraquat-induced degeneration, Neuroscience 141 (2006) 929–937; https://doi.org/10.1016/j.neuroscience.2006.03.06910.1016/j.neuroscience.2006.03.069
  54. 54. R. M. Lopachin and T. Gavin, Response to “Paraquat: The red herring of Parkinson’s disease research,” Toxicol. Sci. 103 (2008) 219–221; https://doi.org/10.1093/toxsci/kfn02810.1093/toxsci/kfn028
  55. 55. J. R. Richardson, Y. Quan, T. B. Sherer, J. T. Greenamyre and G. W. Miller, Paraquat neurotoxicity is distinct from that of MPTP and rotenone, Toxicol. Sci. 88 (2005) 193–201; https://doi.org/10.1093/toxsci/kfi30410.1093/toxsci/kfi304
  56. 56. M. Thiruchelvam, E. K. Richfield, R. B. Baggs, A. W. Tank and D. A. Cory-Slechta, The nigrostriatal dopaminergic system as a preferential target of repeated exposures to combined paraquat and maneb: Implications for Parkinson’s disease, J. Neurosci. 20 (2000) 9207–9214; https://doi.org/10.1523/jneurosci.20-24-09207.200010.1523/JNEUROSCI.20-24-09207.2000
  57. 57. M. Thiruchelvam, E. K. Richfield, B. M. Goodman, R. B. Baggs and D. A. Cory-Slechta, Developmental exposure to the pesticides paraquat and maneb and the Parkinson’s disease phenotype, Neurotoxicology 23 (2002) 621–633; https://doi.org/10.1016/S0161-813X(02)00092-X10.1016/S0161-813X(02)00092-X
  58. 58. S. Srivastav, B. G. Anand, M. Fatima, K. P. Prajapati, S. S. Yadav, K. Kar and A. C. Mondal, Piperine-coated gold nanoparticles alleviate paraquat-induced neurotoxicity in Drosophila melanogaster, ACS Chem. Neurosci. 11 (2020) 3772–3785; https://doi.org/10.1021/acschemneuro.0c0036610.1021/acschemneuro.0c0036633125229
  59. 59. A. O. Correia, A. A. P. Cruz, A. T. R. de Aquino, J. R. G. Diniz, K. B. F. Santana and P. I. M. Cidade, J. D. Peixoto, D. L. Lucetti, M. E. P. Nobre, G. M. P. da Cruz, K. R. T. Neves and G. S. de Barros Viana, Neuroprotective effects of piperine, an alkaloid from the Piper genus, on the Parkinson’s disease model in rats, J. Neurol. Ther. 1 (2015) 1−8; https://doi.org/10.14312/2397-1304.2015-110.14312/2397-1304.2015-1
  60. 60. H. Liu, R. Luo, X. Chen, J. Liu, Y. Bi, L. Zheng and X. Wu, Tissue distribution profiles of three antiparkinsonian alkaloids from Piper longum L. in rats determined by liquid chromatography-tandem mass spectrometry, J. Chromatogr. B 928 (2013) 78−82; https://doi.org/10.1016/j.jchromb.2013.03.02110.1016/j.jchromb.2013.03.02123603295
  61. 61. S. Bastías-Candia, M. Di Benedetto, C. D’Addario, S. Candeletti and P. Romualdi, Combined exposure to agriculture pesticides, paraquat and maneb, induces alterations in the N/OFQ-NOPr and PDYN/KOPr systems in rats: Relevance to sporadic Parkinson’s disease, Environ. Toxicol. 30 (2015) 656–663; https://doi.org/10.1002/tox.2194310.1002/tox.2194324376148
  62. 62. R. M. Miller, G. L. Kiser, T. Kaysser-Kranich, C. Casaceli, E. Colla, M. K. Lee, C. Palaniappan and H. J. Federoff, Wild-type and mutant α-synuclein induce a multi-component gene expression profile consistent with shared pathophysiology in different transgenic mouse models of PD, Exp. Neurol. 204 (2007) 421–432; https://doi.org/10.1016/j.expneurol.2006.12.00510.1016/j.expneurol.2006.12.005
  63. 63. L. C. Grandi, G. Di Giovanni and S. Galati, Animal models of early-stage Parkinson’s disease and acute dopamine deficiency to study compensatory neurodegenerative mechanisms, J. Neurosci. Methods 308 (2018) 205–218; https://doi.org/10.1016/j.jneumeth.2018.08.01210.1016/j.jneumeth.2018.08.012
  64. 64. J. Langston, P. Ballard, J. Tetrud and I. Irwin, Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis, Science 219 (1983) 979–980; https://doi.org/10.1126/science.682356110.1126/science.6823561
  65. 65. M. H. Yan, X. Wang and X. Zhu, Mitochondrial defects and oxidative stress in Alzheimer disease and Parkinson disease, Free Radic. Biol. Med. 62 (2013) 90–101; https://doi.org/10.1016/j.freeradbiomed.2012.11.01410.1016/j.freeradbiomed.2012.11.014
  66. 66. J. Bové and C. Perier, Neurotoxin-based models of Parkinson’s disease, Neuroscience 211 (2012) 51–76; https://doi.org/10.1016/j.neuroscience.2011.10.05710.1016/j.neuroscience.2011.10.057
  67. 67. L. K. Klaidman, J. D. Adams, A. C. Leung, S. Sam Kim and E. Cadenas, Redox cycling of MPP+: Evidence for a new mechanism involving hydride transfer with xanthine oxidase, aldehyde dehydrogenase, and lipoamide dehydrogenase, Free Radic. Biol. Med. 15 (1993) 169–179; https://doi.org/10.1016/0891-5849(93)90056-Z10.1016/0891-5849(93)90056-Z
  68. 68. V. Jackson-Lewis, M. Jakowec, R. E. Burke and S. Przedborski, Time course and morphology of dopaminergic neuronal death caused by the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, Neurodegeneration 4 (1995) 257–269; https://doi.org/10.1016/1055-8330(95)90015-210.1016/1055-8330(95)90015-2
  69. 69. J. Blesa, S. Phani, V. Jackson-Lewis and S. Przedborski, Classic and new animal models of Parkinson’s disease, J. Biomed. Biotechnol. 2012 (2012) Article ID 845618; https://doi.org/10.1155/2012/84561810.1155/2012/845618332150022536024
  70. 70. S. Duty and P. Jenner, Animal models of Parkinson’s disease: A source of novel treatments and clues to the cause of the disease, Br. J. Pharmacol. 164 (2011) 1357–1391; https://doi.org/10.1111/j.1476-5381.2011.01426.x10.1111/j.1476-5381.2011.01426.x322976621486284
  71. 71. V. Jackson-Lewis and S. Przedborski, Protocol for the MPTP mouse model of Parkinson’s disease, Nat. Protoc. 2 (2007) 141–151; https://doi.org/10.1038/nprot.2006.34210.1038/nprot.2006.34217401348
  72. 72. D. T. Stephenson, M. D. Meglasson, M. A. Connell, M. A. Childs, E. Hajos-Korcsok and M. E. Emborg, The effects of a selective dopamine D2 receptor agonist on behavioral and pathological outcome in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated squirrel monkeys, J. Pharmacol. Exp. Ther. 314 (2005) 1257–1266; https://doi.org/10.1124/jpet.105.08737910.1124/jpet.105.087379
  73. 73. J. S. Schneider and C. J. Kovelowski, Chronic exposure to low doses of MPTP. I. Cognitive deficits in motor asymptomatic monkeys, Brain Res. 519 (1990) 122–128; https://doi.org/10.1016/0006-8993(90)90069-N10.1016/0006-8993(90)90069-N
  74. 74. D. S. Goldstein, S. T. Li, C. Holmes and K. Bankiewicz, Sympathetic innervation in the 1-methyl--4-phenyl-1,2,3,6-tetrahydropyridine primate model of Parkinson’s disease, J. Pharmacol. Exp. Ther. 306 (2003) 855–860; https://doi.org/10.1124/jpet.103.05171410.1124/jpet.103.05171412805479
  75. 75. E. Garbayo, E. Ansorena, H. Lana, M. del M. Carmona-Abellan, I. Marcilla, J. L. Lanciego, M. R. Luquin and M. J. Blanco-Prieto, Brain delivery of microencapsulated GDNF induces functional and structural recovery in parkinsonian monkeys, Biomaterials. 110 (2016) 11–23; https://doi.org/10.1016/j.biomaterials.2016.09.01510.1016/j.biomaterials.2016.09.01527697668
  76. 76. F. Blandini and M. T. Armentero, Animal models of Parkinson’s disease, FEBS J. 279 (2012) 1156–1166; https://doi.org/10.1111/j.1742-4658.2012.08491.x10.1111/j.1742-4658.2012.08491.x22251459
  77. 77. S. Sánchez-Iglesias, P. Rey, E. Méndez-Álvarez, J. L. Labandeira-García and R. Soto-Otero, Time-course of brain oxidative damage caused by intrastriatal administration of 6-hydroxydopamine in a rat model of Parkinson’s disease, Neurochem. Res. 32 (2007) 99–105; https://doi.org/10.1007/s11064-006-9232-610.1007/s11064-006-9232-617160721
  78. 78. D. Hernandez-Baltazar, L. M. Zavala-Flores and A. Villanueva-Olivo, The 6-hydroxydopamine model and parkinsonian pathophysiology: Novel findings in an older model, Neurología (English Ed.) 32 (2017) 533–539; https://doi.org/10.1016/j.nrleng.2015.06.01910.1016/j.nrleng.2015.06.019
  79. 79. J. L. Venero, M. Revuelta, J. Cano and A. Machado, Time course changes in the dopaminergic nigrostriatal system following transection of the medial forebrain bundle: detection of oxidatively modified proteins in substantia nigra, J. Neurochem. 68 (2002) 2458–2468; https://doi.org/10.1046/j.1471-4159.1997.68062458.x10.1046/j.1471-4159.1997.68062458.x9166740
  80. 80. D. Stanic, D. I. Finkelstein, D. W. Bourke, J. Drago and M. K. Horne, Time course of striatal re-inner vation following lesions of dopaminergic SNpc neurons of the rat, Eur. J. Neurosci. 18 (2003) 1175–1188; https://doi.org/10.1046/j.1460-9568.2003.02800.x10.1046/j.1460-9568.2003.02800.x12956716
  81. 81. M. Decressac, B. Mattsson and A. Björklund, Comparison of the behavioural and histological characteristics of the 6-OHDA and α-synuclein rat models of Parkinson’s disease, Exp. Neurol. 235 (2012) 306–315; https://doi.org/10.1016/j.expneurol.2012.02.01210.1016/j.expneurol.2012.02.01222394547
  82. 82. D. Hernandez-Baltazar, M. E. Mendoza-Garrido and D. Martinez-Fong, Activation of GSK-3β and caspase-3 occurs in nigral dopamine neurons during the development of apoptosis activated by a striatal injection of 6-hydroxydopamine, PLoS One 8 (2013) e70951 (13 pages); https://doi.org/10.1371/journal.pone.007095110.1371/journal.pone.0070951
  83. 83. G. Mercanti, G. Bazzu and P. Giusti, A 6-hydroxydopamine in vivo model of Parkinson’s disease, Methods Mol. Biol. 846 (2012) 355–364; https://doi.org/10.1007/978-1-61779-536-7_3010.1007/978-1-61779-536-7_30
  84. 84. K. Sakai and D. M. Gash, Effect of bilateral 6-OHDA lesions of the substantia nigra on locomotor activity in the rat, Brain Res. 633 (1994) 144–150; https://doi.org/10.1016/0006-8993(94)91533-410.1016/0006-8993(94)91533-4
  85. 85. M. Healy-Stoffel, S. O. Ahmad, J. A. Stanford and B. Levant, A novel use of combined tyrosine hydroxylase and silver nucleolar staining to determine the effects of a unilateral intrastriatal 6-hydroxydopamine lesion in the substantia nigra: A stereological study, J. Neurosci. Methods 210 (2012) 187–194; https://doi.org/10.1016/j.jneumeth.2012.07.01310.1016/j.jneumeth.2012.07.013344328122850559
  86. 86. J. T. Da Rocha, S. Pinton, B. M. Gai and C. W. Nogueira, Diphenyl diselenide reduces mechanical and thermal nociceptive behavioral responses after unilateral intrastriatal administration of 6-hydroxydopamine in rats, Biol. Trace Elem. Res. 154 (2013) 372–378; https://doi.org/10.1007/s12011-013-9736-210.1007/s12011-013-9736-223821314
  87. 87. A. Heuer, G. A. Smith, M. J. Lelos, E. L. Lane and S. B. Dunnett, Unilateral nigrostriatal 6-hydroxydopamine lesions in mice I: Motor impairments identify extent of dopamine depletion at three different lesion sites, Behav. Brain Res. 228 (2012) 30–43; https://doi.org/10.1016/j.bbr.2011.11.02710.1016/j.bbr.2011.11.02722146593
  88. 88. D. Kirik, C. Rosenblad and A. Björklund, Characterization of behavioral and neurodegenerative changes following partial lesions of the nigrostriatal dopamine system induced by intrastriatal 6-hydroxydopamine in the rat, Exp. Neurol. 152 (1998) 259–277; https://doi.org/10.1006/exnr.1998.684810.1006/exnr.1998.68489710526
  89. 89. H. S. Lindgren, M. J. Lelos and S. B. Dunnett, Do alpha-synuclein vector injections provide a better model of Parkinson’s disease than the classic 6-hydroxydopamine model?, Exp. Neurol. 237 (2012) 36–42; https://doi.org/10.1016/j.expneurol.2012.05.02210.1016/j.expneurol.2012.05.02222727767
  90. 90. P. Qiu, H. Wang, Y. Tai, L. Chen, E. Huang, C. Liu and X. Yang, Protective effect of alpha-synuclein knockdown on methamphetamine-induced neurotoxicity in dopaminergic neurons, Neural Regen. Res. 9 (2014) 951–958; https://doi.org/10.4103/1673-5374.13314610.4103/1673-5374.133146414621625206917
  91. 91. Q. He, J. B. Koprich, Y. Wang, W. B. Yu, B. G. Xiao, J. M. Brotchie and J. Wang, Treatment with trehalose prevents behavioral and neurochemical deficits produced in an AAV α-synuclein rat model of Parkinson’s disease, Mol. Neurobiol. 53 (2016) 2258–2268; https://doi.org/10.1007/s12035-015-9173-710.1007/s12035-015-9173-725972237
  92. 92. L. F. Razgado-Hernandez, A. J. Espadas-Alvarez, P. Reyna-Velazquez, A. Sierra-Sanchez, V. Anaya-Martinez, I. Jimenez-Estrada, M. J. Bannon, D. Martinez-Fong and J. Aceves-Ruiz, The transfection of BDNF to dopamine neurons potentiates the effect of dopamine D3 receptor agonist recovering the striatal innervation, dendritic spines and motor behavior in an aged rat model of Parkinson’s disease, PLoS One 10 (2015) e0117391 (25 pages); https://doi.org/10.1371/journal.pone.011739110.1371/journal.pone.0117391433286125693197
  93. 93. R. Pahuja, K. Seth, A. Shukla, R. K. Shukla, P. Bhatnagar, L. K. S. Chauhan, P. N. Saxena, J. Arun, B. P. Chaudhari, D. K. Patel, S. P. Singh, R. Shukla, V. K. Khanna, P. Kumar, R. K. Chaturvedi and K. C. Gupta, Trans-blood brain barrier delivery of dopamine-loaded nanoparticles reverses functional deficits in parkinsonian rats, ACS Nano 9 (2015) 4850–4871; https://doi.org/10.1021/nn506408v10.1021/nn506408v25825926
  94. 94. C. Bishop, J. L. Taylor, D. M. Kuhn, K. L. Eskow, J. Y. Park and P. D. Walker, MDMA and fenfluramine reduce L-DOPA-induced dyskinesia via indirect 5-HT1A receptor stimulation, Eur. J. Neurosci. 23 (2006) 2669–2676; https://doi.org/10.1111/j.1460-9568.2006.04790.x10.1111/j.1460-9568.2006.04790.x16817869
  95. 95. T. Ren, X. Yang, N. Wu, Y. Cai, Z. Liu and W. Yuan, Sustained-release formulation of levodopa methyl ester/benserazide for prolonged suppressing dyskinesia expression in 6-OHDA-leisoned rats, Neurosci. Lett. 502 (2011) 117–122; https://doi.org/10.1016/j.neulet.2011.07.04210.1016/j.neulet.2011.07.04221835223
  96. 96. A. Azeem, S. Talegaonkar, L. M. Negi, F. J. Ahmad, R. K. Khar and Z. Iqbal, Oil based nanocarrier system for transdermal delivery of ropinirole: A mechanistic, pharmacokinetic and biochemical investigation, Int. J. Pharm. 422 (2012) 436–444; https://doi.org/10.1016/j.ijpharm.2011.10.03910.1016/j.ijpharm.2011.10.03922057087
  97. 97. N. Giladi, B. Boroojerdi, A. D. Korczyn, D. J. Burn, C. E. Clarke and A. H. V. Schapira, Rotigotine transdermal patch in early Parkinson’s disease: A randomized, double-blind, controlled study versus placebo and ropinirole, Mov. Disord. 22 (2007) 2398–2404; https://doi.org/10.1002/mds.2174110.1002/mds.2174117935234
  98. 98. O. K. Sujith and C. Lane, Therapeutic options for continuous dopaminergic stimulation in Parkinson’s disease, Ther. Adv. Neurol. Disord. 2 (2009) 105–113; https://doi.org/10.1177/175628560810137810.1177/1756285608101378300262121180645
  99. 99. A. Wang, L. Wang, K. Sun, W. Liu, C. Sha and Y. Li, Preparation of rotigotine-loaded microspheres and their combination use with L-DOPA to modify dyskinesias in 6-OHDA-lesioned rats, Pharm. Res. 29 (2012) 2367–2376; https://doi.org/10.1007/s11095-012-0762-010.1007/s11095-012-0762-022549738
  100. 100. M. J. Tsai, Y. Bin Huang, P. C. Wu, Y. S. Fu, Y. R. Kao, J. Y. Fang and Y. H. Tsai, Oral apomorphine delivery from solid lipid nanoparticles with different monostearate emulsifiers: Pharmacokinetic and behavioral evaluations, J. Pharm. Sci. 100 (2011) 547–557; https://doi.org/10.1002/jps.2228510.1002/jps.2228520740670
  101. 101. E. Garbayo, E. Ansorena, J. L. Lanciego, M. J. Blanco-Prieto and M. S. Aymerich, Long-term neuro-protection and neurorestoration by glial cell-derived neurotrophic factor microspheres for the treatment of Parkinson’s disease, Mov. Disord. 26 (2011) 1943–1947; https://doi.org/10.1002/mds.2379310.1002/mds.2379321661048
  102. 102. P. H. Yang, J. X. Zhu, Y. D. Huang, X. Y. Zhang, P. Lei, A. I. Bush, Q. Xiang, Z. J. Su and Q. H. Zhang, Human basic fibroblast growth factor inhibits tau phosphorylation via the PI3K/Akt-GSK3β signaling pathway in a 6-hydroxydopamine-induced model of Parkinson’s disease, Neuro degener. Dis. 16 (2016) 357–369; https://doi.org/10.1159/00044587110.1159/00044587127228974
  103. 103. Y. Z. Zhao, X. Li, C. T. Lu, M. Lin, L. J. Chen, Q. Xiang, M. Zhang, R. R. Jin, X. Jiang, X. T. Shen, X. K. Li and J. Cai, Gelatin nanostructured lipid carriers-mediated intranasal delivery of basic fibroblast growth factor enhances functional recovery in hemiparkinsonian rats, Nanomed. Nanotechnol. Biol. Med. 10 (2014) 755–764; https://doi.org/10.1016/j.nano.2013.10.00910.1016/j.nano.2013.10.00924200526
  104. 104. E. Herrán, J. A. Ruiz-Ortega, A. Aristieta, M. Igartua, C. Requejo, J. V. Lafuente, L. Ugedo, J. L. Pedraz and R. M. Hernández, In vivo administration of VEGF- and GDNF-releasing biodegradable polymeric microspheres in a severe lesion model of Parkinson’s disease, Eur. J. Pharm. Biopharm. 85 (2013) 1183–1190; https://doi.org/10.1016/j.ejpb.2013.03.03410.1016/j.ejpb.2013.03.03423639739
DOI: https://doi.org/10.2478/acph-2022-0008 | Journal eISSN: 1846-9558 | Journal ISSN: 1330-0075
Language: English
Page range: 35 - 58
Accepted on: Jan 13, 2021
Published on: Aug 30, 2021
Published by: Croatian Pharmaceutical Society
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year
Related subjects:

© 2021 Yaquelyn Casanova, Sofia Negro, Emilia Barcia, published by Croatian Pharmaceutical Society
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.