References
- 1. C. Nüsslein-Volhard and E. Wieschaus, Mutations affecting segment number and polarity in Drosophila, Nature 287 (1980) 795–801; https://doi.org/10.1038/287795a010.1038/287795a0
- 2. R. Machold, S. Hayashi, M. Rutlin, M. D. Muzumdar, S. Nery, J. G. Corbin, A. Gritli-Linde, T. Dellovade, J. A. Porter, L. L. Rubin, H. Dudek, A. P. McMahon and G. Fishell, Sonic hedgehog is required for progenitor cell maintenance in telencephalic stem cell niches, Neuron 39 (2003) 937–950; https://doi.org/10.1016/s0896-6273(03)00561-010.1016/S0896-6273(03)00561-0
- 3. C. Torroja, N. Gorfinkiel and I. Guerrero, Mechanisms of Hedgehog gradient formation and interpretation, J. Neurobiol. 64 (2005) 334–356; https://doi.org/10.1002/neu.2016810.1002/neu.2016816041759
- 4. M. Varjosalo and J. Taipale, Hedgehog: functions and mechanisms, Genes Dev. 22 (2008) 2454–2472; https://doi.org/10.1101/gad.169360810.1101/gad.169360818794343
- 5. E. Pak and R. A. Segal, Hedgehog signal transduction: Key players, oncogenic drivers, and cancer therapy, Dev. Cell 38 (2016) 333–344; https://doi.org/10.1016/j.devcel.2016.07.02610.1016/j.devcel.2016.07.026501730727554855
- 6. D. M. Stone, M. Hynes, M. Armanini, T. A. Swanson, Q. Gu, R. L. Johnson, M. P. Scott, D. Pennica, A. Goddard, H. Phillips, M. Noll, J. E. Hooper, F. de Sauvage and A. Rosenthal, The tumour-suppressor gene patched encodes a candidate receptor for Sonic hedgehog, Nature 384 (1996) 129–134; https://doi.org/10.1038/384129a010.1038/384129a08906787
- 7. M. Kasper, H. Schnidar, G. W. Neill, M. Hanneder, S. Klingler, L. Blaas, C. Schmid, C. Hauser-Kronberger, G. Regl, M. P. Philpott and F. Aberger, Selective modulation of Hedgehog/GLI target gene expression by epidermal growth factor signaling in human keratinocytes, Mol. Cell. Biol. 26 (2006) 6283–6298; https://doi.org/10.1128/MCB.02317-0510.1128/MCB.02317-05159281616880536
- 8. I. D. Louro, E. C. Bailey, X. Li, L. S. South, P. R. McKie-Bell, B. K. Yoder, C. C. Huang, M. R. Johnson, A. E. Hill, R. L. Johnson and J. M. Ruppert, Comparative gene expression profile analysis of GLI and c-MYC in an epithelial model of malignant transformation, Cancer Res. 62 (2002) 5867–5873.
- 9. L. E. C. Wanshura, K. E. Galvin, H. Ye, M. E. Fernandez-Zapico and C. Wetmore, Sequential activation of Snail1 and N-Myc modulates Sonic Hedgehog-induced transformation of neural cells, Cancer Res. 71 (2011) 5336–5345; https://doi.org/10.1158/0008-5472.CAN-10-263310.1158/0008-5472.CAN-10-2633341268921646478
- 10. M. Merchant, F. F. Vajdos, M. Ultsch, H. R. Maun, U. Wendt, J. Cannon, W. Desmarais, R. A. Lazarus, A. M. de Vos and F. J. de Sauvage, Suppressor of Fused regulates Gli activity through a dual binding mechanism, Mol. Cell. Biol. 24 (2004) 8627–8641; https://doi.org/10.1128/MCB.24.19.8627-8641.200410.1128/MCB.24.19.8627-8641.200451676315367681
- 11. A. M. Skoda, D. Simovic, V. Karin, V. Kardum, S. Vranic and L. Serman, The role of the Hedgehog signaling pathway in cancer: A comprehensive review, Bosn. J. Basic Med. Sci. 18 (2018) 8–20; https://doi.org/10.17305/bjbms.2018.275610.17305/bjbms.2018.2756582667829274272
- 12. C. Zhao, A. Chen, C. H. Jamieson, M. Fereshteh, A. Abrahamsson, J. Blum, H. Y. Kwon, J. Kim, J. P. Chute, D. Rizzieri, M. Munchhof, T. VanArsdale, P. A. Beachy and T. Reya, Hedgehog signalling is essential for maintenance of cancer stem cells in myeloid leukaemia, Nature 458 (2009) 776–779; https://doi.org/10.1038/nature0773710.1038/nature07737294623119169242
- 13. N. Bhagwat, M. D. Keller, R. K. Rampal, K. Shank, E. de Stanchina, K. Rose, D. Amakye and R. L. Levine, Improved efficacy of combination of JAK2 and Hedgehog inhibitors in myelofibrosis, Blood 122 (2013) 666–666; https://doi.org/10.1182/blood.V122.21.666.66610.1182/blood.V122.21.666.666
- 14. J. M. Xavier-Ferrucio, F. V. Pericole, M. R. Lopes, P. Latuf-Filho, K. S. A. Barcellos, A. I. Dias, P. de M. Campos, F. Traina, J. Vassallo, S. T. O. Saad and P. Favaro, Abnormal Hedgehog pathway in myelodysplastic syndrome and its impact on patients’ outcome, Haematologica 100 (2015) e491-493; https://doi.org/10.3324/haematol.2015.12404010.3324/haematol.2015.124040466633826294731
- 15. M. Kobune, R. Takimoto, K. Murase, S. Iyama, T. Sato, S. Kikuchi, Y. Kawano, K. Miyanishi, Y. Sato, Y. Niitsu and J. Kato, Drug resistance is dramatically restored by hedgehog inhibitors in CD34+ leukemic cells, Cancer Sci. 100 (2009) 948–955; https://doi.org/10.1111/j.1349-7006.2009.01111.x10.1111/j.1349-7006.2009.01111.x19245435
- 16. B. Long, L.-X. Wang, F.-M. Zheng, S.-P. Lai, D.-R. Xu, Y. Hu, D.-J. Lin, X.-Z. Zhang, L. Dong, Z.-J. Long, X.-Z. Tong and Q. Liu, Targeting GLI1 suppresses cell growth and enhances chemosensitivity in CD34+ enriched acute myeloid leukemia progenitor cells, Cell. Physiol. Biochem. Int. J. Exp. Cell. Physiol. Biochem. Pharmacol. 38 (2016) 1288–1302; https://doi.org/10.1159/00044307510.1159/00044307527008269
- 17. K. C. S. Queiroz, R. R. Ruela-de-Sousa, G. M. Fuhler, H. L. Aberson, C. V. Ferreira, M. P. Peppelen-bosch and C. A. Spek, Hedgehog signaling maintains chemoresistance in myeloid leukemic cells, Oncogene 29 (2010) 6314–6322; https://doi.org/10.1038/onc.2010.37510.1038/onc.2010.37520802532
- 18. H. A. Zahreddine, B. Culjkovic-Kraljacic, S. Assouline, P. Gendron, A. A. Romeo, S. J. Morris, G. Cormack, J. B. Jaquith, L. Cerchietti, E. Cocolakis, A. Amri, J. Bergeron, B. Leber, M. W. Becker, S. Pei, C. T. Jordan, W. H. Miller and K. L. B. Borden, The sonic hedgehog factor GLI1 imparts drug resistance through inducible glucuronidation, Nature 511 (2014) 90–93; https://doi.org/10.1038/nature1328310.1038/nature13283413805324870236
- 19. K. Huang, B. Ding, Q. Zhong, X. Jiang, X. Li, Z. Wang and F. Y. Meng, Hh/IGF-1R/PI3K/Akt/MRP1 pathway induce refractory acute myeloid leukemia and its targeting therapy, Blood 124 (2014) 3612–3612; https://doi.org/10.1182/blood.V124.21.3612.361210.1182/blood.V124.21.3612.3612
- 20. F. Meng, X. Li, B. Ding, K. Huang, Q. Zhu, F. Chen and Y. Zhu, Molecular mechanism and optimal treatment strategy in acute myeloid leukemia with resistance to drugs and radiation by NVPLED225, Blood 126 (2015) 3691–3691; https://doi.org/10.1182/blood.V126.23.3691.369110.1182/blood.V126.23.3691.3691
- 21. X. Li, F. Chen, Q. Zhu, B. Ding, Q. Zhong, K. Huang, X. Jiang, Z. Wang, C. Yin, Y. Zhu, Z. Li and F. Meng, Gli-1/PI3K/AKT/NF-kB pathway mediates resistance to radiation and is a target for reversion of responses in refractory acute myeloid leukemia cells, Oncotarget 7 (2016) 33004–33015; https://doi.org/10.18632/oncotarget.884410.18632/oncotarget.8844507807027105509
- 22. J. Bariwal, V. Kumar, Y. Dong and R. I. Mahato, Design of Hedgehog pathway inhibitors for cancer treatment, Med. Res. Rev. 39 (2019) 1137–1204; https://doi.org/10.1002/med.2155510.1002/med.21555671458530484872
- 23. R. Tibes, A. Al-Kali, G. R. Oliver, D. H. Delman, N. Hansen, K. Bhagavatula, J. Mohan, F. Rakhshan, T. Wood, J. M. Foran, R. A. Mesa and J. M. Bogenberger, The Hedgehog pathway as targetable vulnerability with 5-azacytidine in myelodysplastic syndrome and acute myeloid leukemia, J. Hematol. Oncol. 8 (2015) 114; https://doi.org/10.1186/s13045-015-0211-810.1186/s13045-015-0211-8461536326483188
- 24. D. A. Irvine, B. Zhang, R. Kinstrie, A. Tarafdar, H. Morrison, V. L. Campbell, H. A. Moka, Y. Ho, C. Nixon, P. W. Manley, H. Wheadon, J. R. Goodlad, T. L. Holyoake, R. Bhatia and M. Copland, Deregulated Hedgehog pathway signaling is inhibited by the smoothened antagonist LDE225 (Sonidegib) in chronic phase chronic myeloid leukaemia, Sci. Rep. 6 (2016) 25476; https://doi.org/10.1038/srep2547610.1038/srep25476486061927157927
- 25. J. E. Cortes, R. Gutzmer, M. W. Kieran and J. A. Solomon, Hedgehog signaling inhibitors in solid and hematological cancers, Cancer Treat. Rev. 76 (2019) 41–50; https://doi.org/10.1016/j.ctrv.2019.04.00510.1016/j.ctrv.2019.04.00531125907
- 26. J. E. Cortes, F. H. Heidel, A. Hellmann, W. Fiedler, B. D. Smith, T. Robak, P. Montesinos, D. A. Pollyea, P. DesJardins, O. Ottmann, W. W. Ma, M. N. Shaik, A. D. Laird, M. Zeremski, A. O’Connell, G. Chan and M. Heuser, Randomized comparison of low dose cytarabine with or without glasdegib in patients with newly diagnosed acute myeloid leukemia or high-risk myelodysplastic syndrome, Leukemia 33 (2019) 379–389; https://doi.org/10.1038/s41375-018-0312-910.1038/s41375-018-0312-9636549230555165
- 27. S. M. Hoy, Glasdegib: First global approval, Drugs 79 (2019) 207–213; https://doi.org/10.1007/s40265-018-1047-710.1007/s40265-018-1047-730666593
- 28. K. J. Norsworthy, K. By, S. Subramaniam, L. Zhuang, P. L. Del Valle, D. Przepiorka, Y.-L. Shen, C. M. Sheth, C. Liu, R. Leong, K. B. Goldberg, A. T. Farrell and R. Pazdur, FDA approval summary: glasdegib for newly diagnosed acute myeloid leukemia, Clin. Cancer Res. 25 (2019) 6021–6025; https://doi.org/10.1158/1078-0432.CCR-19-036510.1158/1078-0432.CCR-19-036531064779
- 29. E. Estey, J. E. Karp, A. Emadi, M. Othus and R. P. Gale, Recent drug approvals for newly diagnosed acute myeloid leukemia: gifts or a Trojan horse?, Leukemia 34 (2020) 671–681; https://doi.org/10.1038/s41375-019-0704-510.1038/s41375-019-0704-531915366
- 30. T. Hilal, Progress in acute myeloid leukaemia: small molecular inhibitors with small benefits, Ecancermedicalscience 14 (2020); https://doi.org/10.3332/ecancer.2020.101510.3332/ecancer.2020.1015710534032256698
- 31. A. Fiorentini, D. Capelli, F. Saraceni, D. Menotti, A. Poloni and A. Olivieri, The time has come for targeted therapies for AML: lights and shadows, Oncol. Ther. 8 (2020) 13–32; https://doi.org/10.1007/s40487-019-00108-x10.1007/s40487-019-00108-x735999632700072
- 32. M. J. Munchhof, Q. Li, A. Shavnya, G. V. Borzillo, T. L. Boyden, C. S. Jones, S. D. LaGreca, L. Martinez-Alsina, N. Patel, K. Pelletier, L. A. Reiter, M. D. Robbins and G. T. Tkalcevic, Discovery of PF-04449913, a potent and orally bioavailable inhibitor of Smoothened, ACS Med. Chem. Lett. 3 (2012) 106–111; https://doi.org/10.1021/ml200242310.1021/ml2002423
- 33. L. Rubin, O. M. Guicherit, S. Price and E. A. Boyd, Mediators of Hedgehog signaling pathways, compositions and uses related thereto; Retrieved from https://patents.google.com/patent/WO2003011219A2/en
- 34. A. J. Jackson-Fisher, M. J. McMahon, J. Lam, C. Li, L. D. Engstrom, K. Tsaparikos, D. J. Shields, D. D. Fang, M. E. Lira, Z. Zhu, M. D. Robbins, R. Schwab, M. J. Munchhof and T. VanArsdale, Abstract 4504: PF-04449913, a small molecule inhibitor of Hedgehog signaling, is effective in inhibiting tumor growth in preclinical models, Exp. Mol. Ther. (pp. 4504–4504). Presented at the Proceedings: AACR 102nd Annual Meeting 2011 - Apr 2-6, 2011; Orlando, FL, American Association for Cancer Research; https://doi.org/10.1158/1538-7445.AM2011-450410.1158/1538-7445.AM2011-4504
- 35. G. Martinelli, V. G. Oehler, C. Papayannidis, R. Courtney, M. N. Shaik, X. Zhang, A. O’Connell, K. R. McLachlan, X. Zheng, J. Radich, M. Baccarani, H. M. Kantarjian, W. J. Levin, J. E. Cortes and C. Jamieson, Treatment with PF-04449913, an oral Smoothened antagonist, in patients with myeloid malignancies: a phase 1 safety and pharmacokinetics study, Lancet Haematol. 2 (2015) e339-346; https://doi.org/10.1016/S2352-3026(15)00096-410.1016/S2352-3026(15)00096-4
- 36. A. J. Wagner, W. A. Messersmith, M. N. Shaik, S. Li, X. Zheng, K. R. McLachlan, R. Cesari, R. Courtney, W. J. Levin and A. B. El-Khoueiry, A phase I study of PF-04449913, an oral Hedgehog inhibitor, in patients with advanced solid tumors, Clin. Cancer Res. 21 (2015) 1044–1051; https://doi.org/10.1158/1078-0432.CCR-14-111610.1158/1078-0432.CCR-14-111625388167
- 37. G. Giordani, M. Barraco, A. Giangrande, G. Martinelli, V. Guadagnuolo, G. Simonetti, G. Perini and R. Bernardoni, The human Smoothened inhibitor PF-04449913 induces exit from quiescence and loss of multipotent Drosophila hematopoietic progenitor cells, Oncotarget 7 (2016) 55313–55327; https://doi.org/10.18632/oncotarget.1087910.18632/oncotarget.10879534241927486815
- 38. M. Copland, A. Hamilton, L. J. Elrick, J. W. Baird, E. K. Allan, N. Jordanides, M. Barow, J. C. Mountford and T. L. Holyoake, Dasatinib (BMS-354825) targets an earlier progenitor population than imatinib in primary CML but does not eliminate the quiescent fraction, Blood 107 (2006) 4532–4539; https://doi.org/10.1182/blood-2005-07-294710.1182/blood-2005-07-294716469872
- 39. X. Jiang, Y. Zhao, C. Smith, M. Gasparetto, A. Turhan, A. Eaves and C. Eaves, Chronic myeloid leukemia stem cells possess multiple unique features of resistance to BCR-ABL targeted therapies, Leukemia 21 (2007) 926–935; https://doi.org/10.1038/sj.leu.240460910.1038/sj.leu.240460917330101
- 40. C. Dierks, R. Beigi, G.-R. Guo, K. Zirlik, M. R. Stegert, P. Manley, C. Trussell, A. Schmitt-Graeff, K. Landwerlin, H. Veelken and M. Warmuth, Expansion of Bcr-Abl-positive leukemic stem cells is dependent on Hedgehog pathway activation, Cancer Cell 14 (2008) 238–249; https://doi.org/10.1016/j.ccr.2008.08.00310.1016/j.ccr.2008.08.00318772113
- 41. N. Fukushima, Y. Minami, S. Kakiuchi, Y. Kuwatsuka, F. Hayakawa, C. Jamieson, H. Kiyoi and T. Naoe, Small-molecule Hedgehog inhibitor attenuates the leukemia-initiation potential of acute myeloid leukemia cells, Cancer Sci. 107 (2016) 1422–1429; https://doi.org/10.1111/cas.1301910.1111/cas.13019508466427461445
- 42. A. Schairer, A. Shih, I. Geron, T. Reya, W. J. Levin, T. Van Arsdale and C. Jamieson, Human blast crisis leukemia stem cell inhibition with a novel Smoothened antagonist., Blood 116 (2010) 1223–1223; https://doi.org/10.1182/blood.V116.21.1223.122310.1182/blood.V116.21.1223.1223
- 43. A. Y. Shih, A. Schairer, C. L. Barrett, I. Geron, A. C. Court Recart, D. Goff, S. Prashad, J. Wu, Q. Jiang, J. Gotlib, L. Balaian, M. D. Minden, H. Leu, R. Wall, W. Ma, K. Shazand, J. D. McPherson, S. M. Kornblau, I. Deichaite, M. Pu, L. Bao, G. Martinelli, T. Reya, S. R. Morris, T. van Arsdale, T. J. Hudson, K. Messer, H. Mikkola, W. J. Levin, K. A. Frazer, A. Sadarangani and C. Jamieson, Cycling toward leukemia stem cell elimination with a selective Sonic Hedgehog antagonist, Blood 118 (2011) 3776–3776; https://doi.org/10.1182/blood.V118.21.3776.377610.1182/blood.V118.21.3776.3776
- 44. P. Chaudhry, M. Singh, T. J. Triche, M. Guzman and A. A. Merchant, GLI3 repressor determines Hedgehog pathway activation and is required for response to SMO antagonist glasdegib in AML, Blood 129 (2017) 3465–3475; https://doi.org/10.1182/blood-2016-05-71858510.1182/blood-2016-05-718585549208928487292
- 45. A. Jackson-Fisher, P. Whalen, M. Elliott, M. McMahon, E. Chen, X. Zheng, M. Ozeck, D. Huang, P. Lira, J. Lee, C. Zhang, J. Lam, M. Spilker, S. Deng, P. Lappin, P. Venne, C. Heinlein, A. Schairer, K. McLachlan and T. VanArsdale, Abstract 1958: Interrogating Hedgehog pathway and smoothened inhibition by PF-04449913 in patient-derived acute myeloid leukemia models, Tumor Biol. (pp. 1958–1958). Presented at the Proceedings: AACR Annual Meeting 2014; April 5-9, 2014; San Diego, CA, American Association for Cancer Research; https://doi.org/10.1158/1538-7445.AM2014-195810.1158/1538-7445.AM2014-1958
- 46. A. Sadarangani, G. Pineda, K. M. Lennon, H.-J. Chun, A. Shih, A. E. Schairer, A. C. Court, D. J. Goff, S. L. Prashad, I. Geron, R. Wall, J. D. McPherson, R. A. Moore, M. Pu, L. Bao, A. Jackson-Fisher, M. Munchhof, T. VanArsdale, T. Reya, S. R. Morris, M. D. Minden, K. Messer, H. K. A. Mikkola, M. A. Marra, T. J. Hudson and C. H. M. Jamieson, GLI2 inhibition abrogates human leukemia stem cell dormancy, J. Transl. Med. 13 (2015) 98; https://doi.org/10.1186/s12967-015-0453-910.1186/s12967-015-0453-9441437525889765
- 47. C. Jamieson, J. E. Cortes, V. Oehler, M. Baccarani, H. M. Kantarjian, C. Papayannidis, K. N. Rice, X. Zhang, N. Shaik, R. Courtney, W. J. Levin and G. Martinelli, Phase 1 Dose-escalation study of PF-04449913, an oral Hedgehog (Hh) inhibitor, in patients with select hematologic malignancies, Blood 118 (2011) 424–424; https://doi.org/10.1182/blood.V118.21.424.42410.1182/blood.V118.21.424.424
- 48. V. Guadagnuolo, C. Papayannidis, I. Iacobucci, S. Durante, C. Terragna, E. Ottaviani, M. C. Abbenante, F. Cattina, S. Soverini, B. Lama, L. Toni, W. J. Levin, R. Courtney, C. Baldazzi, A. Curti, M. Baccarani, C. Jamieson, J. E. Cortes, V. Oehler, K. McLachlan, T. Van Arsdale and G. Martinelli, Gas1 and Kif27 genes are strongly up-regulated biomarkers of Hedgehog inhibition (PF-04449913) on leukemia stem cells in phase I acute myeloid leukemia and chronic myeloid leukemia treated patients, Blood 118 (2011) 1535–1535; https://doi.org/10.1182/blood.V118.21.1535.153510.1182/blood.V118.21.1535.1535
- 49. C. Papayannidis, V. Guadagnuolo, I. Iacobucci, S. Durante, C. Terragna, E. Ottaviani, M. C. Abbenante, F. Cattina, S. Soverini, B. Lama, L. Toni, W. J. Levin, R. Courtney, C. Baldazzi, A. Curti, M. Baccarani, C. Jamieson, J. E. Cortes, V. Oehler, K. McLachlan, T. Van Arsdale and G. Martinelli, PF-04449913 reverts multi drug resistance (MDR) by a strong down-regulation of ABCA2 and BCL2 on leukemia stem cells in phase I acute myeloid leukemia and chronic myeloid leukemia treated patients, Blood 118 (2011) 1429–1429; https://doi.org/10.1182/blood.V118.21.1429.142910.1182/blood.V118.21.1429.1429
- 50. Y. Minami, H. Minami, T. Miyamoto, G. Yoshimoto, Y. Kobayashi, W. Munakata, Y. Onishi, M. Kobayashi, M. Ikuta, G. Chan, A. Woolfson, C. Ono, M. N. Shaik, Y. Fujii, X. Zheng and T. Naoe, Phase I study of glasdegib (PF-04449913), an oral Smoothened inhibitor, in Japanese patients with select hematologic malignancies, Cancer Sci. 108 (2017) 1628–1633; https://doi.org/10.1111/cas.1328510.1111/cas.13285554350728556364
- 51. M. R. Savona, D. A. Pollyea, W. Stock, V. G. Oehler, M. A. Schroeder, J. Lancet, J. McCloskey, H. M. Kantarjian, W. W. Ma, M. N. Shaik, A. D. Laird, M. Zeremski, A. O’Connell, G. Chan and J. E. Cortes, Phase Ib study of glasdegib, a Hedgehog pathway inhibitor, in combination with standard chemotherapy in patients with AML or high-risk MDS, Clin. Cancer Res. 24 (2018) 2294–2303; https://doi.org/10.1158/1078-0432.CCR-17-282410.1158/1078-0432.CCR-17-282429463550
- 52. U. Borate, B. D. Smith, S. Gore, A. M. Zeidan, M. R. Savona, M. L. Savoie, N. Zhu, D. Breems, X. Zhang, M. N. Shaik, A. Rampersad, G. Chan, A. Woolfson and M. A. Sekeres, Phase 1B study of glasdegib (PF-04449913) in combination with azacitidine in patients with higher risk myelodysplasic syndrome, oligoblastic acute myeloid leukemia, or chronic myelomonocytic leukemia [abstract no. P255], Haematologica 101 (Suppl 1) (2016) 73–74.
- 53. M. A. Sekeres, M. W. Schuster, M. Joris, J. Krauter, J. A. Maertens, E. Gyan, T. Kovacsovics, A. Verma, P. Vyas, E. S. Wang, W. Wendy Ma, M. Zeremski, A. Kudla, G. Chan and A. M. Zeidan, A phase 1b study of glasdegib in combination with azacitidine in patients with untreated higher-risk myelodysplastic syndromes, acute myeloid leukemia, and chronic myelomonocytic leukemia, Blood 134 (2019) 177–177; https://doi.org/10.1182/blood-2019-12405010.1182/blood-2019-124050
- 54. A. M. Zeidan, M. Schuster, M. Joris, J. Krauter, J. Maertens, E. Gyan, T. Kovacsovics, A. Verma, P. Vyas, E. S. Wang, W. Ma, M. Zeremski, A. Kudla, G. Chan and M. A. Sekeres, Glasdegib in combination with azacitidine (AZA) in patients (pts) with untreated higher-risk myelodysplastic syndromes (MDS), acute myeloid leukemia (AML) and chronic myelomonocytic leukemia (CMML): Effects on marrow recovery and transfusion independence, J. Clin. Oncol. 38 (2020) 7526–7526; https://doi.org/10.1200/JCO.2020.38.15_suppl.752610.1200/JCO.2020.38.15_suppl.7526
- 55. E. S. Wang, T. Bell, A. M. Zeidan, H. Bhattacharyya, A. Kudla, G. Chan and M. A. Sekeres, Health-related quality of life (HRQoL) in patients with untreated higher-risk myelodysplastic syndromes (MDS), acute myeloid leukemia (AML), and chronic myelomonocytic leukemia (CMML) receiving glasdegib + azacitidine (AZA), J. Clin. Oncol. 38 (2020) 7527–7527; https://doi.org/10.1200/JCO.2020.38.15_suppl.752710.1200/JCO.2020.38.15_suppl.7527
- 56. A. T. Gerds, T. Tauchi, E. Ritchie, M. Deininger, C. Jamieson, R. Mesa, M. Heaney, N. Komatsu, H. Minami, Y. Su, N. Shaik, X. Zhang, C. DiRienzo, M. Zeremski, G. Chan and M. Talpaz, Phase 1/2 trial of glasdegib in patients with primary or secondary myelofibrosis previously treated with ruxolitinib, Leuk. Res. 79 (2019) 38–44; https://doi.org/10.1016/j.leukres.2019.02.01210.1016/j.leukres.2019.02.012814898530849661
- 57. J. E. Cortes, B. Douglas Smith, E. S. Wang, A. Merchant, V. G. Oehler, M. Arellano, D. J. DeAngelo, D. A. Pollyea, M. A. Sekeres, T. Robak, W. W. Ma, M. Zeremski, M. Naveed Shaik, A. Douglas Laird, A. O’Connell, G. Chan and M. A. Schroeder, Glasdegib in combination with cytarabine and daunorubicin in patients with AML or high-risk MDS: Phase 2 study results, Am. J. Hematol. 93 (2018) 1301–1310; https://doi.org/10.1002/ajh.2523810.1002/ajh.25238622110230074259
- 58. H. Kantarjian, Y. Oki, G. Garcia-Manero, X. Huang, S. O’Brien, J. Cortes, S. Faderl, C. Bueso-Ramos, F. Ravandi, Z. Estrov, A. Ferrajoli, W. Wierda, J. Shan, J. Davis, F. Giles, H. I. Saba and J.-P. J. Issa, Results of a randomized study of 3 schedules of low-dose decitabine in higher-risk myelodysplastic syndrome and chronic myelomonocytic leukemia, Blood 109 (2007) 52–57; https://doi.org/10.1182/blood-2006-05-02116210.1182/blood-2006-05-02116216882708
- 59. S. Thépot, R. Itzykson, V. Seegers, C. Recher, E. Raffoux, B. Quesnel, J. Delaunay, T. Cluzeau, A. Marfaing Koka, A. Stamatoullas, M.-P. Chaury, C. Dartigeas, S. Cheze, A. Banos, P. Morel, I. Plan-tier, A.-L. Taksin, J. P. Marolleau, C. Pautas, X. Thomas, F. Isnard, B. Beve, Y. Chait, A. Guerci, N. Vey, F. Dreyfus, L. Ades, N. Ifrah, H. Dombret, P. Fenaux and C. Gardin, Azacitidine in untreated acute myeloid leukemia: a report on 149 patients: azacitidine in frontline AML, Am. J. Hematol. 89 (2014) 410–416; https://doi.org/10.1002/ajh.2365410.1002/ajh.2365424375487
- 60. H. Dombret, J. F. Seymour, A. Butrym, A. Wierzbowska, D. Selleslag, J. H. Jang, R. Kumar, J. Cavenagh, A. C. Schuh, A. Candoni, C. Récher, I. Sandhu, T. Bernal del Castillo, H. K. Al-Ali, G. Martinelli, J. Falantes, R. Noppeney, R. M. Stone, M. D. Minden, H. McIntyre, S. Songer, L. M. Lucy, C. L. Beach and H. Döhner, International phase 3 study of azacitidine vs conventional care regimens in older patients with newly diagnosed AML with >30% blasts, Blood 126 (2015) 291–299; https://doi.org/10.1182/blood-2015-01-62166410.1182/blood-2015-01-621664450494525987659
- 61. S. M. Luger, Acute myeloid leukemia: how to treat the fit patient over age 75?, Best Pract. Res. Clin. Haematol. 32 (2019) 101105; https://doi.org/10.1016/j.beha.2019.10110510.1016/j.beha.2019.10110531779985
- 62. J. E. Cortes, A. Merchant, C. Jamieson, D. A. Pollyea, M. Heuser, G. Chan, P. Wang, K. A. Ching, J. Johnson and T. O’Brien, Biomarkers of overall survival and response to glasdegib and intensive or non-intensive chemotherapy in patients with acute myeloid leukemia, Blood 132 (2018) 1429–1429; https://doi.org/10.1182/blood-2018-99-11123910.1182/blood-2018-99-111239
- 63. K. A. Ching, D. Huang, K. Wang, M. Ozeck, P. Lira, J. Gao, J. Bienkowska, P. Rejto, J. Hardwick, T. O’Brien and G. Chan, Analysis of mutations associated with response to glasdegib in acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS), Clin. Res. Clin. Trials (pp. LB-215–LB-215). Presented at the Proceedings: AACR Annual Meeting 2018; April 14-18, 2018; Chicago, IL, American Association for Cancer Research.; https://doi.org/10.1158/1538-7445.AM2018-LB-21510.1158/1538-7445.AM2018-LB-215
- 64. S. Lin, N. Shaik, G. Chan, J. E. Cortes and A. Ruiz-Garcia, An evaluation of overall survival in patients with newly diagnosed acute myeloid leukemia and the relationship with glasdegib treatment and exposure, Cancer Chemother. Pharmacol. 86 (2020) 451–459; https://doi.org/10.1007/s00280-020-04132-x10.1007/s00280-020-04132-x
- 65. H. Döhner, M. Lübbert, W. Fiedler, L. Fouillard, A. Haaland, J. M. Brandwein, S. Lepretre, O. Reman, P. Turlure, O. G. Ottmann, C. Müller-Tidow, A. Krämer, E. Raffoux, K. Döhner, R. F. Schlenk, F. Voss, T. Taube, H. Fritsch and J. Maertens, Randomized, phase 2 trial of low-dose cytarabine with or without volasertib in AML patients not suitable for induction therapy, Blood 124 (2014) 1426–1433.; https://doi.org/10.1182/blood-2014-03-56055710.1182/blood-2014-03-560557
- 66. A. K. Burnett, N. Russell, R. K. Hills, N. Panoskaltsis, A. Khwaja, C. Hemmaway, P. Cahalin, R. E. Clark and D. Milligan, A randomised comparison of the novel nucleoside analogue sapacitabine with low-dose cytarabine in older patients with acute myeloid leukaemia, Leukemia 29 (2015) 1312–1319; https://doi.org/10.1038/leu.2015.3810.1038/leu.2015.38
- 67. M. Heiblig, M. Elhamri, I. Tigaud, A. Plesa, F. Barraco, H. Labussière, S. Ducastelle, M. Michallet, F. Nicolini, C. Plesa, E. Wattel, G. Salles and X. Thomas, Treatment with low-dose cytarabine in elderly patients (age 70 years or older) with acute myeloid leukemia: a single institution experience, Mediterr. J. Hematol. Infect. Dis. 8 (2016) 2016009; https://doi.org/10.4084/mjhid.2016.00910.4084/mjhid.2016.009
- 68. A. T. Fathi, Glasdegib with low-dose cytarabine: a new upfront option for the vulnerable AML patient, Clin. Cancer Res. 25 (2019) 6015–6017; https://doi.org/10.1158/1078-0432.CCR-19-198610.1158/1078-0432.CCR-19-1986
- 69. C. Papayannidis, B. D. Smith, M. Heuser, P. Montesinos, M. A. Sekeres, A. Oriol, G. Schiller, A. Candoni, C. Jamieson, C. J. Hoang, W. W. Ma, M. Zeremski, A. O’Connell, G. Chan and J. E. Cortes, Low-dose cytarabine with or without glasdegib in newly diagnosed patients with acute myeloid leukemia: long-term analysis of a phase 2 randomized trial, Clin. Lymphoma Myeloma Leuk. 19 (2019) S228–S229; https://doi.org/10.1016/j.clml.2019.07.11110.1016/j.clml.2019.07.111
- 70. M. Heuser, W. Fiedler, M. A. Sekeres, P. Montesinos, B. Leber, A. Merchant, C. Papayannidis, J. A. Pérez-Simón, C. J. Hoang, W. Wendy Ma, M. Zeremski, A. O’Connell, G. Chan and J. E. Cortes, Clinical benefit of glasdegib plus low-dose cytarabine in patients with de novo and secondary acute myeloid leukemia: long-term analysis of a phase 2 randomized trial, Clin. Lymphoma Myeloma Leuk. 19 (2019) S231–S231; https://doi.org/10.1016/j.clml.2019.07.11610.1016/j.clml.2019.07.116
- 71. C. D. DiNardo, K. W. Pratz, A. Letai, B. A. Jonas, A. H. Wei, M. Thirman, M. Arellano, M. G. Frattini, H. Kantarjian, R. Popovic, B. Chyla, T. Xu, M. Dunbar, S. K. Agarwal, R. Humerickhouse, M. Mabry, J. Potluri, M. Konopleva and D. A. Pollyea, Safety and preliminary efficacy of venetoclax with decitabine or azacitidine in elderly patients with previously untreated acute myeloid leukaemia: a non-randomised, open-label, phase 1b study, Lancet Oncol. 19 (2018) 216–228; https://doi.org/10.1016/S1470-2045(18)30010-X10.1016/S1470-2045(18)30010-X
- 72. A. Wolska-Washer and T. Robak, Glasdegib in the treatment of acute myeloid leukemia, Future Oncol. Lond. Engl. 15 (2019) 3219–3232; https://doi.org/10.2217/fon-2019-017110.2217/fon-2019-017131432695
- 73. M. Heuser, T. Robak, P. Montesinos, B. Leber, W. M. Fiedler, D. A. Pollyea, A. Brown, A. O’Connell, W. Ma, G. Chan and J. E. Cortes, Glasdegib (GLAS) plus low-dose cytarabine (LDAC) in AML or MDS: BRIGHT AML 1003 final report and four-year overall survival (OS) follow-up, J. Clin. Oncol. 38 (2020) 7509–7509; https://doi.org/10.1200/JCO.2020.38.15_suppl.750910.1200/JCO.2020.38.15_suppl.7509
- 74. J. E. Cortes, F. H. Heidel, W. Fiedler, B. D. Smith, T. Robak, P. Montesinos, A. Candoni, B. Leber, M. A. Sekeres, D. A. Pollyea, R. Ferdinand, W. W. Ma, T. O’Brien, A. O’Connell, G. Chan and M. Heuser, Survival outcomes and clinical benefit in patients with acute myeloid leukemia treated with glasdegib and low-dose cytarabine according to response to therapy, J. Hematol. Oncol. 13 (2020) 92; https://doi.org/10.1186/s13045-020-00929-810.1186/s13045-020-00929-8736256332664995
- 75. E. S. Wang, M. Heuser, M. A. Sekeres, C. Papayannidis, A. Candoni, A. Merchant, A. Brown, A. O’Connell, W. Ma, G. Chan and J. E. Cortes, Effect of early blood counts on overall survival (OS) following glasdegib + LDAC in newly diagnosed AML: BRIGHT AML 1003 post hoc analysis, J. Clin. Oncol. 38 (2020) 7525–7525; https://doi.org/10.1200/JCO.2020.38.15_suppl.752510.1200/JCO.2020.38.15_suppl.7525
- 76. G. Tremblay, T. Westley, J. C. Cappelleri, B. Arondekar, G. Chan, T. J. Bell and A. Briggs, Overall survival of glasdegib in combination with low-dose cytarabine, azacitidine, and decitabine among adult patients with previously untreated AML: comparative effectiveness using simulated treatment comparisons, Clin. Outcomes Res. CEOR 11 (2019) 551–565; https://doi.org/10.2147/CEOR.S20348210.2147/CEOR.S203482673565331564931
- 77. S. van Beekhuizen, Y. Hu, A. Gezin, B. Heeg, T. Bell, M. Charaan, A. Brown, G. Chan and J. C. Cappelleri, The comparative effectiveness of glasdegib in combination with low-dose cytarabine versus azacitidine by bone marrow blasts counts among patients with newly-diagnosed acute myeloid leukemia who are ineligible for intensive chemotherapy, J. Clin. Oncol. 38 (2020) e19512–e19512; https://doi.org/10.1200/JCO.2020.38.15_suppl.e1951210.1200/JCO.2020.38.15_suppl.e19512
- 78. J. E. Lancet, R. S. Komrokji, K. L. Sweet, V. H. Duong, K. L. McGraw, L. Zhang, L. A. Nardelli, Z. Ma, R. R. Reich, E. Padron and A. F. List, Phase 2 trial of Smoothened (SMO) inhibitor PF-04449913 (PF-04) in refractory myelodysplastic syndromes (MDS), Blood 128 (2016) 3174–3174; https://doi.org/10.1182/blood.V128.22.3174.317410.1182/blood.V128.22.3174.3174
- 79. D. A. Sallman, R. S. Komrokji, K. L. Sweet, Q. Mo, K. L. McGraw, V. H. Duong, L. Zhang, L. A. Nardelli, E. Padron, A. F. List and J. E. Lancet, A phase 2 trial of the oral smoothened inhibitor glasdegib in refractory myelodysplastic syndromes (MDS), Leuk. Res. 81 (2019) 56–61; https://doi.org/10.1016/j.leukres.2019.03.00810.1016/j.leukres.2019.03.008778734931030089
- 80. A. M. Zeidan, M. W. Schuster, J. Krauter, J. A. Maertens, E. Gyan, M. Joris, T. F. Menne, P. Vyas, W. W. Ma, A. O’Connell, M. Zeremski, A. Kudla, G. Chan and M. A. Sekeres, Clinical benefit of glasdegib in combination with azacitidine or low-dose cytarabine in patients with acute myeloid leukemia, Blood 134 (2019) 3916–3916; https://doi.org/10.1182/blood-2019-12403410.1182/blood-2019-124034
- 81. A. Kent, S. Vasu, D. Schatz, N. Monson, S. Devine, C. Smith, J. A. Gutman and D. A. Pollyea, Glasdegib as maintenance therapy for patients with AML and MDS patients at high risk for postal-logeneic stem cell transplant relapse, Blood Adv. 4 (2020) 3102–3108; https://doi.org/10.1182/bloodadvances.202000199110.1182/bloodadvances.2020001991736234832634235
- 82. J. E. Cortes, H. Dombret, A. A. Merchant, T. Tauchi, C. DiRienzo, M. Zeremski, B. Sleight, X. Zhang, M. N. Shaik, T. Bell, G. Chan and M. A. Sekeres, Phase 3, randomized, placebo-controlled trials evaluating glasdegib in combination with intensive or nonintensive chemotherapy in patients with untreated acute myeloid leukemia, J. Clin. Oncol. 36 (2018) TPS7073–TPS7073; https://doi.org/10.1200/JCO.2018.36.15_suppl.TPS707310.1200/JCO.2018.36.15_suppl.TPS7073
- 83. J. E. Cortes, H. Dombret, A. Merchant, T. Tauchi, C. G. DiRienzo, B. Sleight, X. Zhang, E. P. Leip, N. Shaik, T. Bell, G. Chan and M. A. Sekeres, Glasdegib plus intensive/nonintensive chemotherapy in untreated acute myeloid leukemia: BRIGHT AML 1019 Phase III trials, Future Oncol. 15 (2019) 3531–3545; https://doi.org/10.2217/fon-2019-037310.2217/fon-2019-037331516032
- 84. S. Lin, M. Shaik and A. Ruiz, Population pharmacokinetics of glasdegib in patients with advanced hematologic and solid tumors (in “American Society for Clinical Pharmacology and Therapeutics - Abstracts of 2018 Annual Meeting”), Clin. Pharmacol. Ther. 103 (Suppl 1) (2018) S78; https://doi.org/10.1002/cpt.99310.1002/cpt.993
- 85. S. Lin, N. Shaik, G. Martinelli, A. J. Wagner, J. Cortes and A. Ruiz-Garcia, Population pharmacokinetics of glasdegib in patients with advanced hematologic malignancies and solid tumors, J. Clin. Pharmacol. (2019); https://doi.org/10.1002/jcph.155610.1002/jcph.1556718737231769065
- 86. N. Shaik, B. Hee, Y. Liang and R. R. LaBadie, Absolute oral bioavailability of glasdegib (PF-04449913), a Smoothened inhibitor, in randomized healthy volunteers, Clin. Pharmacol. Drug Dev. 8 (2019) 895–902; https://doi.org/10.1002/cpdd.69210.1002/cpdd.692685040330977980
- 87. N. Giri, L. H. Lam, R. R. LaBadie, J. F. Krzyzaniak, H. Jiang, B. Hee, Y. Liang and M. N. Shaik, Evaluation of the effect of new formulation, food, or a proton pump inhibitor on the relative bio-availability of the Smoothened inhibitor glasdegib (PF-04449913) in healthy volunteers, Cancer Chemother. Pharmacol. 80 (2017) 1249–1260; https://doi.org/10.1007/s00280-017-3472-910.1007/s00280-017-3472-929086063
- 88. N. Shaik, B. Hee, H. Wei and R. R. LaBadie, Evaluation of the effects of formulation, food, or a proton-pump inhibitor on the pharmacokinetics of glasdegib (PF-04449913) in healthy volunteers: a randomized phase I study, Cancer Chemother. Pharmacol. 83 (2019) 463–472; https://doi.org/10.1007/s00280-018-3748-810.1007/s00280-018-3748-8639447430536154
- 89. J. L. Lam, A. Vaz, B. Hee, Y. Liang, X. Yang and M. N. Shaik, Metabolism, excretion and pharmacokinetics of [14C]glasdegib (PF-04449913) in healthy volunteers following oral administration, Xenobiotica Fate Foreign Compd. Biol. Syst. 47 (2017) 1064–1076; https://doi.org/10.1080/00498254.2016.126130710.1080/00498254.2016.126130727866461
- 90. M. N. Shaik, R. R. LaBadie, D. Rudin and W. J. Levin, Evaluation of the effect of food and ketoconazole on the pharmacokinetics of the Smoothened inhibitor PF-04449913 in healthy volunteers, Cancer Chemother. Pharmacol. 74 (2014) 411–418; https://doi.org/10.1007/s00280-014-2502-010.1007/s00280-014-2502-024944041
- 91. European Medicines Agency, Glasdegib (DAURISMO): EPAR - Product Information, https://www.ema.europa.eu/en/documents/product-information/daurismo-epar-product-information_en.pdf (accessed 10 October 2020).
- 92. M. N. Shaik, B. Hee, H. Wei and R. R. LaBadie, Evaluation of the effect of rifampin on the pharmacokinetics of the Smoothened inhibitor glasdegib in healthy volunteers, Br. J. Clin. Pharmacol. 84 (2018) 1346–1353; https://doi.org/10.1111/bcp.1356810.1111/bcp.13568598054129488303
- 93. A. Ruiz-Garcia, N. Shaik, S. Lin, C. Jamieson, M. Heuser and G. Chan, Evaluation of the relationship of glasdegib exposure and safety end points in patients with refractory solid tumors and hematologic malignancies, J. Clin. Pharmacol. (2020) jcph.1742; https://doi.org/10.1002/jcph.174210.1002/jcph.1742789144132974950
- 94. M. Tavares, S. Chacim and J. M. Mariz, Compassionate use of glasdegib in combination with low-dose cytarabine for relapsed, refractory acute myeloid leukemia or high-risk myelodysplastic syndrome, Ann. Hematol. (2020); https://doi.org/10.1007/s00277-020-04291-010.1007/s00277-020-04291-033001280
- 95. N. Shaik, L. Mendes da Costa, B. Hee, Y. Liang and R. R. LaBadie, A thorough QT study to evaluate the effect of glasdegib on cardiac repolarization in healthy adult subjects (in “Abstracts for the Ninth American Conference on Pharmacometrics (ACoP9)”), J. Pharmacokinet. Pharmacodyn. 45 (2018) S87 [Abstract no. T-092]; https://doi.org/10.1007/s10928-018-9606-910.1007/s10928-018-9606-930203256
- 96. J. C. Masters, N. Shaik, L. Mendes da Costa, B. Hee and R. R. LaBadie, Clinical and model-based evaluation of the effect of glasdegib on cardiac repolarization from a randomized thorough QT study, Clin. Pharmacol. Drug Dev. (2020) cpdd.862; https://doi.org/10.1002/cpdd.86210.1002/cpdd.862798388832790066
- 97. N. Sarapa and M. R. Britto, Challenges of characterizing proarrhythmic risk due to QTc prolongation induced by nonadjuvant anticancer agents, Expert Opin. Drug Saf. 7 (2008) 305–318; https://doi.org/10.1517/14740338.7.3.30510.1517/14740338.7.3.30518462188
- 98. E. Park, J. Willard, D. Bi, M. Fiszman, D. Kozeli and J. Koerner, The impact of drug-related QT prolongation on FDA regulatory decisions, Int. J. Cardiol. 168 (2013) 4975–4976; https://doi.org/10.1016/j.ijcard.2013.07.13610.1016/j.ijcard.2013.07.13623920061
- 99. R. J. Lipinski, P. R. Hutson, P. W. Hannam, R. J. Nydza, I. M. Washington, R. W. Moore, G. G. Girdaukas, R. E. Peterson and W. Bushman, Dose- and route-dependent teratogenicity, toxicity, and pharmacokinetic profiles of the hedgehog signaling antagonist cyclopamine in the mouse, Toxicol. Sci. 104 (2008) 189–197; https://doi.org/10.1093/toxsci/kfn07610.1093/toxsci/kfn076292786818411234
- 100. E. Morinello, M. Pignatello, L. Villabruna, P. Goelzer and H. Bürgin, Embryofetal development study of vismodegib, a Hedgehog pathway inhibitor, in rats, Birth Defects Res. B. Dev. Reprod. Toxicol. 101 (2014) 135–143; https://doi.org/10.1002/bdrb.2109310.1002/bdrb.2109324692404
- 101. Glasdegib, Drugs Lact. Database Lact. Bethesda (MD): National Library of Medicine (US); Retrieved from http://www.ncbi.nlm.nih.gov/books/NBK535600/
- 102. S. V. Mohan and A. L. S. Chang, Management of cutaneous and extracutaneous side effects of smoothened inhibitor therapy for advanced basal cell carcinoma, Clin. Cancer Res. 21 (2015) 2677–2683; https://doi.org/10.1158/1078-0432.CCR-14-318010.1158/1078-0432.CCR-14-318025792568
- 103. M. E. Lacouture, B. Dréno, P. A. Ascierto, R. Dummer, N. Basset-Seguin, K. Fife, S. Ernst, L. Licitra, R. I. Neves, K. Peris, S. Puig, J. Sokolof, A. Sekulic, A. Hauschild and R. Kunstfeld, Characterization and management of hedgehog pathway inhibitor-related adverse events in patients with advanced basal cell carcinoma, The Oncologist 21 (2016) 1218–1229; https://doi.org/10.1634/theoncologist.2016-018610.1634/theoncologist.2016-0186506153227511905
- 104. A. A. Jacobsen, A. R. Kydd and J. Strasswimmer, Practical management of the adverse effects of Hedgehog pathway inhibitor therapy for basal cell carcinoma, J. Am. Acad. Dermatol. 76 (2017) 767–768; https://doi.org/10.1016/j.jaad.2016.04.06310.1016/j.jaad.2016.04.06328325399
- 105. X. Song, Y. Peng, X. Wang, Y. Chen, L. Jin, T. Yang, M. Qian, W. Ni, X. Tong and J. Lan, Incidence, survival, and risk factors for adults with acute myeloid leukemia not otherwise specified and acute myeloid leukemia with recurrent genetic abnormalities: analysis of the surveillance, epidemiology, and end results (SEER) database, 2001–2013, Acta Haematol. 139 (2018) 115–127; https://doi.org/10.1159/00048622810.1159/00048622829455198
- 106. German-Austrian AML Study Group (AMLSG), G. Nagel, D. Weber, E. Fromm, S. Erhardt, M. Lübbert, W. Fiedler, T. Kindler, J. Krauter, P. Brossart, A. Kündgen, H. R. Salih, J. Westermann, G. Wulf, B. Hertenstein, M. Wattad, K. Götze, D. Kraemer, T. Heinicke, M. Girschikofsky, H. G. Derigs, H. A. Horst, C. Rudolph, M. Heuser, G. Göhring, V. Teleanu, L. Bullinger, F. Thol, V. I. Gaidzik, P. Paschka, K. Döhner, A. Ganser, H. Döhner, R. F. Schlenk and the German-Austrian AML Study Group (AMLSG), Epidemiological, genetic, and clinical characterization by age of newly diagnosed acute myeloid leukemia based on an academic population-based registry study (AMLSG BiO), Ann. Hematol. 96 (2017) 1993–2003; https://doi.org/10.1007/s00277-017-3150-310.1007/s00277-017-3150-3569109129090343
- 107. X. Thomas and M. Heiblig, An evaluation of glasdegib for the treatment of acute myelogenous leukemia, Expert Opin. Pharmacother. 21 (2020) 523–530; https://doi.org/10.1080/14656566.2020.171309410.1080/14656566.2020.171309432027196
- 108. N. Daver, A. H. Wei, D. A. Pollyea, A. T. Fathi, P. Vyas and C. D. DiNardo, New directions for emerging therapies in acute myeloid leukemia: the next chapter, Blood Cancer J. 10 (2020) 107; https://doi.org/10.1038/s41408-020-00376-110.1038/s41408-020-00376-1759922533127875
- 109. J. E. Cortes, A. Candoni, R. E. Clark, B. Leber, P. Montesinos, P. Vyas, A. M. Zeidan and M. Heuser, Selection and management of older patients with acute myeloid leukemia treated with glasdegib plus low-dose cytarabine: expert panel review, Leuk. Lymphoma (2020) 1–19; https://doi.org/10.1080/10428194.2020.181744510.1080/10428194.2020.181744532967493
- 110. J. C. Masters, R. R. LaBadie, J. Salageanu, J. Li and N. Shail, Pharmacokinetics and safety of glasdegib in participants with moderate/severe hepatic impairment: a phase I, single-dose, matched case-control study, Clin. Pharmacol. Drug Dev. (2020); https://doi.org/10.1002/cpdd.897.10.1002/cpdd.897835930833356019
- 111. N. Shaik, R. LaBadie, B. Hee and G. Chan, Evaluation of the impact of renal impairment on the pharmacokinetics of glasdegib, Clin. Pharmacol. Ther. 107 (2020) (S1) S69–S69 [Abstract no. PII-126]; https://doi.org/10.1002/cpt.173210.1002/cpt.173232060909
- 112. H. A. Pham, S. Milev, S. Li, D. Zou, Y. Hu, B. Heeg and T. J. Bell, Budget impact of glasdegib in combination with low-dose cytarabine for the treatment of first-line acute myeloid leukemia in the United States, Blood 134 (2019) 5852–5852; https://doi.org/10.1182/blood-2019-12270910.1182/blood-2019-122709
- 113. S. R. Goldsmith, A. R. Lovell and M. A. Schroeder, Glasdegib for the treatment of adult patients with newly diagnosed acute myeloid leukemia or high-grade myelodysplastic syndrome who are elderly or otherwise unfit for standard induction chemotherapy, Drugs Today 55 (2019) 545; https://doi.org/10.1358/dot.2019.55.9.302016010.1358/dot.2019.55.9.302016031584572
- 114. R. M. Shallis, N. A. Podoltsev, T. Prebet and A. M. Zeidan, Trial in progress: Glad-AML – a randomized, phase 2 trial of glasdegib with two standard decitabine regimens for older patients with newly-diagnosed, poor-risk acute myeloid leukemia, Blood 136 (2020) 29–29; https://doi.org/10.1182/blood-2020-13942810.1182/blood-2020-139428