Have a personal or library account? Click to login
Design, synthesis and molecular modeling study of substituted indoline-2-ones and spiro[indole-heterocycles] with potential activity against Gram-positive bacteria Cover

Design, synthesis and molecular modeling study of substituted indoline-2-ones and spiro[indole-heterocycles] with potential activity against Gram-positive bacteria

Open Access
|Aug 2021

References

  1. 1. S. K. Sridhar and A. Ramesh, Synthesis and pharmacological activities of hydrazones, Schiff and Mannich bases of isatin derivatives, Biol. Pharm. Bull. 24 (2001) 1149–1152; https://doi.org/10.1248/bpb.24.114910.1248/bpb.24.114911642321
  2. 2. M. Verma, S. N. Pandeya, K. N. Singh and J. P. Stables, Anticonvulsant activity of Schiff bases of isatin derivatives, Acta Pharm. 59 (2004) 49–56.
  3. 3. A. K. Ádám, S. Grzegorz, J. B. Andrzej and M. K. György, Spiro[pyrrolidine-3,3′-oxindoles] and their indoline analogs as new 5-HT6 receptor chemotypes, Molecules 22 (2017) Article ID 2221; https://doi.org/10.3390/molecules2212222110.3390/molecules22122221614975129240714
  4. 4. E. Siddalingamurthy, K. M. Mahadevan, N. M. Jagadeesh and M. N. Kumara, Synthesis and docking study of 3-(N-alkyl/aryl piperidyl) indoles with serotonin-5HT, H1 and CCR2 antagonist receptors, Int. J. Pharm. Pharm. Sci. 6 (2014) 475–482.
  5. 5. N. Karal, A. Gursoy, F. Kandemirli, N. Shvets, F. B. Kaynak, S. Ozbey, V. Kovalishyn and A. Dimoglo, Synthesis and structure-antituberculosis activity relationship of 1H-indole-2,3-dione derivatives, Bioorg. Med. Chem. 15 (2007) 5888–5904; https://doi.org/10.1016/j.bmc.2007.05.06310.1016/j.bmc.2007.05.06317561405
  6. 6. Q. Xu, L. Huang, J. Liu, L. Ma, T. Chen, J. Chen, F. Peng, D. Cao, Z. Yang, N. Qiu, J. Qiu, G. Wang, X. Liang, A. Peng, M. Xiang, Y. Wei and L. Chen, Design, synthesis and biological evaluation of thiazole- and indole-based derivatives for the treatment of type II diabetes, Eur. J. Med. Chem. 52 (2012) 70–81; https://doi.org/10.1016/j.ejmech.2012.03.00610.1016/j.ejmech.2012.03.00622483089
  7. 7. A. I. Hashem, A. S. Youssef, K. A. Kandeel and W. S. Abou-Elmagd, Conversion of some 2(3H)-furanones bearing a pyrazolyl group into other heterocyclic systems with a study of their antiviral activity, Eur. J. Med. Chem. 42 (2007) 934–939; https://doi.org/10.1016/j.ejmech.2006.12.03210.1016/j.ejmech.2006.12.03217321008
  8. 8. P. Kumar, S. Singh and M. R. F. Pratama, Synthesis of some novel 1H-indole derivatives with antibacterial activity and antifungal activity, Lett. App. NanoBioSci. 9 (2020) 961–967; https://doi.org/10.33263/LIANBS92.96196710.33263/LIANBS92.961967
  9. 9. R. V. Singh, N. Fahmi and M. K. Biyala, Coordination behavior and biopotency of N and S/O donor ligands with their palladium(II) and platinum(II) complexes, J. Iranian Chem. Soc. 40 (2005) 40–46; https://doi.org/https://doi.org/10.1007/BF0324577810.1007/BF03245778
  10. 10. K. Meenakshi, G. Sammaiah, M. Sarangapani and R. J. Venkateswar, Synthesis and antimicrobial activity of 1-N-piperidinomethyl isatin-3-[N-(quinolin-8-yloxy) acetyl] hydrazones, Indian J. Heterocycl. Chem. 16 (2006) 21–24.
  11. 11. W. Hong, J. Li, Z. Chang, X. Tan, H. Yang, Y. Ouyang, Y. Yang, S. Kaur, I. C. Paterson, Y. F. Ngeow and H. Wang, Synthesis and biological evaluation of indole core-based derivatives with potent antibacterial activity against resistant bacterial pathogens, J. Antibiot. 70 (2017) 832–844; https://doi.org/10.1038/ja.2017.5510.1038/ja.2017.5528465626
  12. 12. M. Taha, E A. J. Aldhamin, N. B. Almandil, El H. Anouar, N. Uddin, M. Alomari, F. Rahim, B. Adalat, M. Ibrahim, F. Nawaz, N. Iqbal, B. Alghanem, A. Altolayyan and K. M. Khan, Synthesis of indole based acetohydrazide analogs: Their in vitro and in silico thymidine phosphorylase studies, Bioorg. Chem. 98 (2020) Article ID 103745; https://doi.org/10.1016/j.bioorg.2020.10374510.1016/j.bioorg.2020.10374532200327
  13. 13. T. Tokunaga, H. W. Ewan, T. Umezome, K. Okazaki, Y. Ueki, K. Kumagai, S. Hourai, J. Nagamine, H. Seki, M. Taiji, H. Noguchi and R. Nagata, Oxindole derivatives as orally active potent growth hormone secretagogues, J. Med. Chem. 44 (2001) 4641–4649; https://doi.org/10.1021/jm010376310.1021/jm010376311741481
  14. 14. T. Tokunaga, H. W. Ewan, J. Nagamine and R. Nagata, Structure-activity relationships of the oxindole growth hormone secretagogues, Bioorg. Med. Chem. Lett. 15 (2005) 1789–1792; https://doi.org/10.1016/j.bmcl.2005.02.04210.1016/j.bmcl.2005.02.042
  15. 15. P. E. Romo, B. Insuasty, R. Abonia, M. del Pilar Crespo and J. Quiroga, Synthesis of new oxindoles and determination of their antibacterial properties, Heteroatom Chem. 2020 (2020) Article ID 8021920 (9 pages); https://doi.org/10.1155/2020/802192010.1155/2020/8021920
  16. 16. K. N. Aneesrahman, K. Ramaiah, G. Rohini, G. P. Stefy, N. S. P. Bhuvanesh and A. Sreekanth, Synthesis and characterisations of copper(II) complexes of 5-methoxyisatin thiosemicarbazones: Effect of N-terminal substitution on DNA/protein binding and biological activities, Inorg. Chim. Acta 492 (2019) 131–141; https://doi.org/10.1016/j.ica.2019.04.01910.1016/j.ica.2019.04.019
  17. 17. A. A. El-Gendy and A. M. Ahmed, Synthesis and antimicrobial activity of some new 2-indolinone derived oximes and spiro-isoxazolines, Arch. Pharm. Res. 23 (2000) 310–314; https://doi.org/10.1007/bf0297543910.1007/BF02975439
  18. 18. A. L. Davis, D. R. Smith and T. J. McCord, Synthesis and microbiological properties of 3-amino-1-hydroxy-2-indolinone and related compounds, J. Med. Chem. 16 (1973) 1043–1045; https://doi.org/10.1021/jm00267a02010.1021/jm00267a020
  19. 19. O. Sureyya and O. Z. Semiha, A Study of 3-substituted benzylidene-1,3-dihydro-indoline derivatives as antimicrobial and antiviral agents, Z. Naturforsch. C 64c (2009) 155–162; https://doi.org/10.1515/znc-2009-3-40110.1515/znc-2009-3-401
  20. 20. C. K. Ryu, J. Y. Lee, R. E. Park, M. Y. Ma and J. H. Nho, Synthesis and antifungal activity of 1H-indole-4,7-diones, Bioorg. Med. Chem. Lett. 17 (2007) 127–131; https://doi.org/10.1016/j.bmcl.2006.09.07610.1016/j.bmcl.2006.09.076
  21. 21. R. Hoessel, S. Leclerc, J. A. Endicott, M. E. Nobel, A. Lawrie, P. Tunnah, M. Leost, E. Damiens, D. Marie, D. Marko, E. Niederberger, W. Tang, G. Eisenbrand and L. Meijer, Indirubin, the active constituent of a Chinese antileukaemia medicine, inhibits cyclin-dependent kinases, Nat. Cell Biol. 60 (1999) 60–67; https://doi.org/10.1038/903510.1038/9035
  22. 22. R. Han, Highlight on the studies of anticancer drugs derived from plants in China, Stem Cells 12 (1994) 53–63; https://doi.org/10.1002/stem.553012011010.1002/stem.5530120110
  23. 23. H. P. Zhang, Y. Kamano, Y. Ichihara, H. Kizu, K. Komiyama, H. ltokawa and G. R. Pettit, Isolation and structure of convolutamydines B – D from marine bryozoan Amathia convolute, Tetrahedron 51 (1995) 5523–5528; https://doi.org/10.1016/0040-4020(95)00241-Y10.1016/0040-4020(95)00241-Y
  24. 24. A. Abdel-Rahman, E. Keshk, M. Hanna and S. El-Bady, Synthesis and evaluation of some new spiro indoline-based heterocycles as potentially active antimicrobial agents, Bioorg. Med. Chem. 12 (2004) 2483–2488; https://doi.org/10.1016/j.bmc.2003.10.06310.1016/j.bmc.2003.10.06315080944
  25. 25. S. Rajeev, S. P. Siva, K. Leena, K. Shilpi and C. J. Subhash, Design and synthesis of spiro[indolethiazolidine]spiro[indole-pyrans] as antimicrobial agents, Bioorg. Med. Chem. Lett. 21 (2011) 5465–5469; https://doi.org/10.1016/j.bmcl.2011.06.12110.1016/j.bmcl.2011.06.12121782421
  26. 26. P. Maryam, A. Sakineh, and M. Mojtaba, Synthesis and antibacterial evaluation of novel spiro[indole-pyrimidine]ones, J. Heterocycl. Chem. 55 (2018) 173–180; https://doi.org/10.1002/jhet.302110.1002/jhet.3021
  27. 27. T. Kitayama, R. Iwabuchi, S. Minagawa, S. Sawada, R. Okumura, K. Hoshino, J. Cappiello and R. Utsumi, Synthesis of a novel inhibitor against MRSA and VRE: preparation from zerumbone ring opening material showing histidine-kinase inhibition, Bioorg. Med. Chem. Lett. 17 (2007) 1098–1101; https://doi.org/10.1016/j.bmcl.2006.11.01510.1016/j.bmcl.2006.11.01517157007
  28. 28. A. M. Stock, V. L. Robinson and P. N. Goudreau, Two-component signal transduction, Annu. Rev. Biochem. 69 (2000) 183–215; https://doi.org/10.1146/annurev.biochem.69.1.18310.1146/annurev.biochem.69.1.18310966457
  29. 29. R. Gao, and A. M. Stock, Biological insights from structures of two-component proteins, Annu. Rev. Microbiol. 63 (2009) 133–154; https://doi.org/10.1146/annurev.micro.091208.07321410.1146/annurev.micro.091208.073214364527419575571
  30. 30. K. E. Wilke and E. E. Carlson, All signals lost, Sci. Transl. Med. 5 (2013) Article ID 203ps12; https://doi.org/10.1126/scitranslmed.300667010.1126/scitranslmed.3006670448037024048521
  31. 31. A. E. Bem, N. Velikova, M. T. Pellicer, P. V. Baarlen, A. Marina and J. M. Wells, Bacterial histidine kinases as novel antibacterial drug targets, ACS Chem Biol. 10 (2015) 213–224; https://doi.org/10.1021/cb500713510.1021/cb500713525436989
  32. 32. A. A. Radwan and W. Abdel-Mageed, In silico studies of quinoxaline-2-carboxamide 1,4-di-n-oxide derivatives as antimycobacterial agents, Molecules 19 (2014) 2247–2260; https://doi.org/10.3390/molecules1902224710.3390/molecules19022247627188224566302
  33. 33. A. A. Radwan, F. K. Alanazi and M. H. Al-Agami, 1,3,4-Thiadiazole and 1,2,4-triazole-3(4H)-thione bearing salicylate moiety: synthesis and evaluation as anti-Candida albicans, Braz. J. Pharm. Sci. 53 (2017) e15239; https://doi.org/10.1590/s2175-9790201700011523910.1590/s2175-97902017000115239
  34. 34. T. Abul-Fadl, A. A. Radwan, H. A. Abdel-Aziz, B. Mohamed, I. A. Mohamad, K. Adnan, Novel Schiff bases of indoline-2,3-dione and nalidixic acid hydrazide: synthesis, in vitro antimycobacterial and in silico Mycobacterium tuberculosis (mtb) DNA gyrase inhibitory activity, Dig. J. Nanomater. Bios. 7 (2012) 329–336.
  35. 35. T. Aboul-Fadl, A. A. Radwan, M. I. Attia, A. Al-Dhfyan and H. A. Abdel-Aziz, Schiff bases of indoline-2,3-dione (isatin) with potential antiproliferative activity, Chem. Cent. J. 6 (2012) Article ID 49; https://doi.org/10.1186/1752-153X-6-4910.1186/1752-153X-6-49
  36. 36. A. A. Radwan, Structure-based virtual screening for novel EGFR kinase inhibitors using the zinc database, Lat. Am. J. Pharm. 34 (2015) 1107–1112.
  37. 37. A. A. Radwan, F. Al-Mohanna, F. K. Alanazi, P. S. Manogaran and A. Al-Dhfyan, Bioorg. Med. Chem. Lett. 26 (2016) 1664–1670; https://doi.org/10.1016/j.bmcl.2016.02.06410.1016/j.bmcl.2016.02.064
  38. 38. A. A. Radwan and F. K. Alanazi, In silico studies on novel inhibitors of MERS-CoV: Structure-based pharmacophore modeling, database screening and molecular docking, Trop. J. Pharm. Res. 17 (2018) 513–517; https://doi.org/http://dx.doi.org/10.4314/tjpr.v17i3.1810.4314/tjpr.v17i3.18
  39. 39. M. Kuroda, T. Ohta, I. Uchiyama, T. Baba, H. Yuzawa, I. Kobayashi, L. Cui, A. Oguchi, K. Aoki, Y. Nagai, J.-Q. Lian, T. Ito, M. Kanamori, H. Matsumaru, A. Maruyama, H. Murakami, A. Hosoyama, Y. Mizutani-Ui and K. Hiramatsu, Whole genome sequencing of methicillin resistant Staphylococcus aureus, Lancet 357 (2001) 1225–1240; https://doi.org/10.1016/S0140-6736(00)04403-210.1016/S0140-6736(00)04403-2
  40. 40. C. Camacho, G. Coulouris, V. Avagyan, N. Ma, J. Papadopoulos, K. Bealer and T. L. Madden, BLAST+: architecture and applications, BMC Bioinform. 10 (2009) 421–430; https://doi.org/10.1186/1471-2105-10-42110.1186/1471-2105-10-421
  41. 41. F. András and A. Sali, Modeller: generation and refinement of homology-based protein structure models, Meth. Enzymol. 374 (2003) 461–491; https://doi.org/10.1016/S0076-6879(03)74020-810.1016/S0076-6879(03)74020-8
  42. 42. P. T. Lang, S. R. Brozell, S. Mukherjee, E. F. Pettersen, E. C. Meng, V. Thomas, R. C. Rizzo, D. A. Case, T. L. James and I. D. Kuntz, DOCK 6: combining techniques to model RNA-small molecule complexes, RNA 15 (2009) 1219–1230; https://doi.org/10.1261/rna.156360910.1261/rna.1563609268551119369428
  43. 43. Y. Cai, M. Su, A. Ahmad, X. Hu, J. Sang, L. Kong, X. Chen, C. Wang, J. Shuai and A. Han, Conformational dynamics of the essential sensor histidine kinase WalK, Acta Crystallogr. D 73 (2017) 793–803; https://doi.org/10.1107/S205979831701304310.1107/S2059798317013043563390528994408
  44. 44. E. Geisinger, E. A. George, J. Chen, T. W. Muir and R. P. Novick, Identification of ligand specificity determinants in AgrC, the Staphylococcus aureus quorum-sensing receptor, J. Biol. Chem. 283 (2008) 8930–8938; https://doi.org/10.1074/jbc.M71022720010.1074/jbc.M710227200227637118222919
DOI: https://doi.org/10.2478/acph-2022-0004 | Journal eISSN: 1846-9558 | Journal ISSN: 1330-0075
Language: English
Page range: 79 - 95
Accepted on: Jan 17, 2021
Published on: Aug 30, 2021
Published by: Croatian Pharmaceutical Society
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year
Related subjects:

© 2021 Awwad Abdoh Radwan, Fares Kaed Aanazi, Mohammed Al-Agamy, Gamal Mohammad Mahrous, published by Croatian Pharmaceutical Society
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.