Have a personal or library account? Click to login
Neuroprotective effects of arbutin against oxygen and glucose deprivation-induced oxidative stress and neuroinflammation in rat cortical neurons Cover

Neuroprotective effects of arbutin against oxygen and glucose deprivation-induced oxidative stress and neuroinflammation in rat cortical neurons

Open Access
|Aug 2021

References

  1. 1. Z. Yang, C. Weian, H. Susu and W. Hanmin, Protective effects of mangiferin on cerebral ischemiareperfusion injury and its mechanisms, Eur. J. Pharmacol. 771 (2015) 145–151; https://doi.org/10.1016/j.ejphar.2015.12.00310.1016/j.ejphar.2015.12.00326656757
  2. 2. R. H. Lee, M. H. Lee, C. Y. Wu, A. Couto e Silva, H. E. Possoit, T. H. Hsieh, A. Minagar and H. W. Lin, Cerebral ischemia and neuroregeneration, Neural Regen. Res. 13 (2018) 373–385; https://doi.org/10.4103/1673-5374.22871110.4103/1673-5374.228711590049029623912
  3. 3. W. Li and S. Yang, Targeting oxidative stress for the treatment of ischemic stroke: Upstream and downstream therapeutic strategies, Brain Circ. 2 (2016) 153–163; https://doi.org/10.4103/2394-8108.19527910.4103/2394-8108.195279612622430276293
  4. 4. R. L. Jayaraj, S. Azimullah, R. Beiram, F. Y. Jalal and G. A. Rosenberg, Neuroinflammation: friend and foe for ischemic stroke, J. Neuroinflammation 16 (2019) Article ID 142 (24 pages); https://doi.org/10.1186/s12974-019-1516-210.1186/s12974-019-1516-2661768431291966
  5. 5. D. Lin, L. Wang, S. Yan, Q. Zhang, J. H. Zhang and A. Shao, The role of oxidative stress in common risk factors and mechanisms of cardio-cerebrovascular ischemia and depression, Oxid. Med. Cell. Longev. 2019 (2019) Article ID 2491927 (13 pages); https://doi.org/10.1155/2019/249192710.1155/2019/2491927704448032148646
  6. 6. O. A. Harari and J. K. Liao, NF-κB and innate immunity in ischemic stroke, Ann. N. Y. Acad. Sci. 1207 (2010) 32–40; https://doi.org/10.1111/j.1749-6632.2010.05735.x10.1111/j.1749-6632.2010.05735.x380709720955423
  7. 7. M. Kawabori and M. A. Yenari, Inflammatory responses in brain ischemia, Curr. Med. Chem. 22 (2015) 1258–1277; https://doi.org/10.2174/092986732266615020915403610.2174/0929867322666150209154036556803925666795
  8. 8. T. Shichita, M. Ito and A. Yoshimura, Post-ischemic inflammation regulates neural damage and protection, Front. Cell. Neurosci. 8 (2014) Article ID 319 (8 pages); https://doi.org/10.3389/fncel.2014.0031910.3389/fncel.2014.00319419654725352781
  9. 9. C. Pop, L. Vlase and M. Tamas, Natural resources containing arbutin. Determination of arbutin in the leaves of Bergenia crassifolia (L.) Fritsch. acclimated in Romania, Not. Bot. Hortic. Agrobot. Cluj-Napoca 37 (2009) 129–132; https://doi.org/10.15835/nbha3713108
  10. 10. F. Yousefi, S. Mahjoub, M. Pouramir and F. Khadir, Hypoglycemic activity of Pyrus biossieriana Buhse leaf extract and arbutin: Inhibitory effects on alpha amylase and alpha glucosidase, Casp. J. Int. Med. 4 (2013) 763–767.
  11. 11. F. Khadir, M. Pouramir, S. G. Joorsaraee, F. Feizi, H. Sorkhi and F. Yousefi, The effect of arbutin on lipid peroxidation and antioxidant capacity in the serum of cyclosporine-treated rats, Casp. J. Int. Med. 6 (2015) 196–200.
  12. 12. M. E. Shahaboddin, M. Pouramir, A. A. Moghadamnia, H. Parsian, M. Lakzaei and H.Mir, Pyrus biossieriana Buhse leaf extract: An antioxidant, antihyperglycaemic and antihyperlipidemic agent, Food Chem. 126 (2011) 1730–1733; https://doi.org/10.1016/j.foodchem.2010.12.06910.1016/j.foodchem.2010.12.06925213951
  13. 13. B. E. Myagmar, E. Shinno, T. Ichiba and Y. Aniya, Antioxidant activity of medicinal herb Rhodococcum vitis-idaea on galactosamine-induced liver injury in rats, Phytomedicine 11 (2004) 416–423; https://doi.org/10.1016/j.phymed.2003.04.00310.1016/j.phymed.2003.04.00315330497
  14. 14. S. R. Ahmadian, M. Ghasemi-Kasman, M. Pouramir and F. Sadeghi, Arbutin attenuates cognitive impairment and inflammatory response in pentylenetetrazol-induced kindling model of epilepsy, Neuropharmacology 146 (2019) 117–127; https://doi.org/10.1016/j.neuropharm.2018.11.03810.1016/j.neuropharm.2018.11.03830503994
  15. 15. H. J. Lee and K. W. Kim, Anti–inflammatory effects of arbutin in lipopolysaccharide-stimulated BV2 microglial cells, Inflamm. Res. 61 (2012) 817–825; https://doi.org/10.1007/s00011-012-0474-210.1007/s00011-012-0474-222487852
  16. 16. M. Dadgar, M. Pouramir, Z. Dastan, M. Ghasemi-Kasman, M. Ashrafpour, A. A. Moghadamnia, S. Khafri and M. Pourghasem, Arbutin attenuates behavioral impairment and oxidative stress in an animal model of Parkinson’s disease, Avicenna J. Phytomed. 8 (2018) 533–542.
  17. 17. Y. Ding, D. Kong, T. Zhou, N.-D. Yang, C. Xin, J. Xu, Q. Wang, H. Zhang, Q. Wu, X. Lu, K. Lim, B. Ma, C. Zhang, L. Li and W. Huang, α-Arbutin protects against Parkinson’s disease-associated mitochondrial dysfunction in vitro and in vivo, Neuromol. Med. 22 (2019) 56–67; https://doi.org/10.1007/s12017-019-08562-610.1007/s12017-019-08562-631401719
  18. 18. Z. Dastan, M. Pouramir, M. Ghasemi-Kasman, Z. Ghasemzadeh, M. Dadgar, M. Gol, M. Ashraf-pour, M. Pourghasem, A. A. Moghadamnia and S. Khafri, Arbutin reduces cognitive deficit and oxidative stress in animal model of Alzheimer’s disease, Int. J. Neurosci. 129 (2019) 1145–1153; https://doi.org/10.1080/00207454.2019.163837610.1080/00207454.2019.163837631251091
  19. 19. J. X. Wu, L. Y. Zhang, Y. L. Chen, S. S. Yu, Y. Zhao and J. Zhao, Curcumin pretreatment and post-treatment both improve the antioxidative ability of neurons with oxygen-glucose deprivation, Neural. Regen. Res. 10 (2015) 481–489; https://doi.org/10.4103/1673-5374.15370010.4103/1673-5374.153700439611425878600
  20. 20. J. Ye and Y. Zhang, Curcumin protects against intracellular amyloid toxicity in rat primary neurons, Int. J. Clin. Exp. Med. 5 (2012) 44–49.
  21. 21. L. Wang, L. Zhang, Z. B. Chen, J. Y. Wu, X. Zhang and Y. Xu, Icariin enhances neuronal survival after oxygen and glucose deprivation by increasing SIRT1, Eur. J. Pharmacol. 609 (2009) 40–44; https://doi.org/10.1016/j.ejphar.2009.03.03310.1016/j.ejphar.2009.03.03319303870
  22. 22. J. Xiang, Y. P. Tang, Z. Y. Zhou, P. Wu, Z. Wang, M. Mori and D. F. Cai, Apocynum venetum leaf extract protects rat cortical neurons from injury induced by oxygen and glucose deprivation in vitro, Can. J. Physiol. Pharmacol. 88 (2010) 907–917; https://doi.org/10.1139/y10-06910.1139/Y10-069
  23. 23. W. Zhao, S. Wang, T. Qin and W. Wang, Arbutin attenuates hydrogen peroxide-induced oxidative injury through regulation of microRNA-29a in retinal ganglion cells, Biomed. Pharmacother. 112 (2019) Article ID 108729; https://doi.org/10.1016/j.biopha.2019.10872910.1016/j.biopha.2019.10872930970524
  24. 24. D. Gao, T. Huang, X. Jiang, S. Hu, L. Zhang and Z. Fei, Resveratrol protects primary cortical neuron cultures from transient oxygen-glucose deprivation by inhibiting MMP-9, Mol. Med. Rep. 9 (2014) 2197–2204; https://doi.org/10.3892/mmr.2014.208610.3892/mmr.2014.208624682241
  25. 25. J. Wu, Q. Li, X. Wang, S. Yu, L. Li, X. Wu, Y. Chen, J. Zhao and Y. Zhao, Neuroprotection by curcumin in ischemic brain injury involves the Akt/Nrf2 pathway, PLoS ONE 8 (2013) e59843 (9 pages); https://doi.org/10.1371/journal.pone.005984310.1371/journal.pone.0059843361087923555802
  26. 26. R. AlJohri, M. AlOkail and S. H. Haq, Neuroprotective role of vitamin D in primary neuronal cortical culture, eNeurologicalSci 14 (2018) 43–48; https://doi.org/10.1016/j.ensci.2018.12.00410.1016/j.ensci.2018.12.004631286030619951
  27. 27. J. Chen-Roetling, L. Chen and R. F. Regan, Minocycline attenuates iron neurotoxicity in cortical cell cultures, Biochem. Biophys. Res. Commun. 386 (2009) 322–326; https://doi.org/10.1016/j.bbrc.2009.06.02610.1016/j.bbrc.2009.06.026278294419523448
  28. 28. P. B. Godkar, R. K. Gordon, A. Ravindran and B. P. Doctor, Celastrus paniculatus seed oil and organic extracts attenuate hydrogen peroxide- and glutamate-induced injury in embryonic rat fore-brain neuronal cells, Phytomedicine 13 (2006) 29–36; https://doi.org/10.1016/j.phymed.2003.11.01110.1016/j.phymed.2003.11.01116360930
  29. 29. M. G. Ryou and R. T. Mallet, An in vitro oxygen-glucose deprivation model for studying ischemiareperfusion injury of neuronal cells, Methods Mol. Biol. 1717 (2018) 229–235; https://doi.org/10.1007/978-1-4939-7526-6_1810.1007/978-1-4939-7526-6_1829468596
  30. 30. T. S. Anthonymuthu, E. M. Kenny and H. Bayır, Therapies targeting lipid peroxidation in traumatic brain injury, Brain Res. 1640 (2016) 57–76; https://doi.org/10.1016/j.brainres.2016.02.00610.1016/j.brainres.2016.02.006487011926872597
  31. 31. A. Nurmi, P. J. Lindsberg, M. Koistinaho, W. Zhang, E. Juettler, M. L. Karjalainen-Lindsberg, F. Weih, N. Frank, M. Schwaninger and J. Koistinaho, Nuclear factor-kappaB contributes to infarction after permanent focal ischemia, Stroke 35 (2004) 987–991; https://doi.org/10.1161/01.STR.0000120732.45951.2610.1161/01.STR.0000120732.45951.2614988572
DOI: https://doi.org/10.2478/acph-2022-0002 | Journal eISSN: 1846-9558 | Journal ISSN: 1330-0075
Language: English
Page range: 123 - 134
Accepted on: Jan 13, 2021
Published on: Aug 30, 2021
Published by: Croatian Pharmaceutical Society
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year
Related subjects:

© 2021 Jingjing Tan, Manoj Kumar Yadav, Sushma Devi, Manish Kumar, published by Croatian Pharmaceutical Society
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.