Have a personal or library account? Click to login
Antioxidant and antihyperglycemic activities of Scorzonera cinerea radical leaves in streptozocin-induced diabetic rats Cover

Antioxidant and antihyperglycemic activities of Scorzonera cinerea radical leaves in streptozocin-induced diabetic rats

Open Access
|Apr 2021

References

  1. 1. C. Steele, D. Steel and C. Waine, 6 – Pathophysiology of Diabetic Retinopathy, in Diabetes and the Eye (Eds. C. Steele, D. Steel and C. Waine), Butterworth-Heineman 2008, pp. 59–70; https://doi.org/10.1016/B978-0-08-045307-1.50011-310.1016/B978-0-08-045307-1.50011-3
  2. 2. O. R. Ayepola, N. L. Brooks and O. O. Oguntibeju, Antioxidant-antidiabetic Agents and Human Health, in Oxidative Stress and Diabetic Complications: The Role of Antioxidant Vitamins and Flavonoids, Intech Open, London 2014, pp. 25–58.
  3. 3. J. L. Ríos, F. Francini and G. T. Schinella, Natural products for the treatment of type 2 diabetes mellitus, Planta Med.81 (2015) 975–994; https://doi.org/10.1055/s-0035-154613110.1055/s-0035-1546131
  4. 4. A. M. Donia, Phytochemical and pharmacological studies on Scorzonera alexandrina Boiss, J. Saud. Chem. Soc.20 (2016) S433–S439; https://doi.org/10.1016/j.jscs.2013.01.00110.1016/j.jscs.2013.01.001
  5. 5. L. Milella, A. Bader, N. De Tommasi, D. Russo and A. Braca, Antioxidant and free radical-scavenging activity of constituents from two Scorzonera species, Food Chem.160 (2014) 298–304; https://doi.org/10.1016/j.foodchem.2014.03.09710.1016/j.foodchem.2014.03.097
  6. 6. Ö. B. Acıkara, G. S. Çitoğlu, S. Dall’Acqua, H. Özbek, J. Cvačka, M. Zemlička and K. Ŝmejkal, Bioassay-guided isolation of the antinociceptive compounds motiol and β-sitosterol from Scorzonera latifolia root extract, Pharmazie69 (2014) 711–714; https://doi.org/10.1691/ph.2014.3920
  7. 7. E. K. Akkol, Ö. B. Acıkara, I. Süntar, B. Ergene and G. Saltan Çitoğlu, Ethnopharmacological evaluation of some Scorzonera species: In vivo anti-inflammatory and antinociceptive effects, J. Ethnopharmacol.140 (2012) 261–270; https://doi.org/10.1016/j.jep.2012.01.01510.1016/j.jep.2012.01.015
  8. 8. E. K. Akkol, O. B. Acıkara, I. Süntar, G. Saltan Çitoğlu, H. Keleş and B. Ergene, Enhancement of wound healing by topical application of Scorzonera species: Determination of the constituents by HPLC with new validated reverse phase method, J. Ethnopharmacol. 137 (2011) 1018–1027; https://doi.org/10.1016/j.jep.2011.07.02910.1016/j.jep.2011.07.029
  9. 9. Association of Official Analytical Chemists, Official Methods of Analysis of the AOAC International, (Ed. G. W. Latimer), 20th ed., AOAC International, Rockville 2016, pp. 570–655.
  10. 10. V. L. Singleton, R. Orthofer and R. M. Lamuela-Raventós, Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent, Methods Enzymol. 299 (1999) 152–178; https://doi.org/10.1016/S0076-6879(99)99017-110.1016/S0076-6879(99)99017-1
  11. 11. J. Zhishen, T. Mengcheng and W. Jianming, The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals, Food Chem. 64 (1999) 555–559; https://doi.org/10.1016/S0308-8146(98)00102-210.1016/S0308-8146(98)00102-2
  12. 12. K. Mishra, H. Ojha and N. K. Chaudhury, Estimation of antiradical properties of antioxidants using DPPH• assay: A critical review and results, Food Chem. 130 (2012) 1036–1043; https://doi.org/10.1016/j.foodchem.2011.07.12710.1016/j.foodchem.2011.07.127
  13. 13. R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang and C. Rice-Evans, Antioxidant activity applying an improved ABTS radical cation decolorization assay, Free Radic. Biol. Med. 26 (1999) 1231–1237; https://doi.org/10.1016/S0891-5849(98)00315-310.1016/S0891-5849(98)00315-3
  14. 14. Y. M. Kim, Y. K. Jeong, M. H. Wang, W. Y. Lee and H. I. Rhee, Inhibitory effect of pine extract on α-glucosidase activity and postprandial hyperglycemia, Nutrition21 (2005) 756–761; https://doi.org/10.1016/j.nut.2004.10.01410.1016/j.nut.2004.10.014
  15. 15. H. H. Draper and M. Hadley, Malondialdehyde determination as index of lipid peroxidation, Methods Enzymol. 186 (1990) 421–431; https://doi.org/10.1016/0076-6879(90)86135-I10.1016/0076-6879(90)86135-I
  16. 16. E. Beutler, T. Gelbart and C. Pegelow, Erythrocyte glutathione synthetase deficiency leads not only to glutathione but also to glutathione-S-transferase deficiency, J. Clin. Invest.77 (1986) 38–41; https://doi.org/10.1172/JCI11229810.1172/JCI112298
  17. 17. J. M. McCord, Analysis of superoxide dismutase activity, Curr. Protoc. Toxicol. 00 (1999) 7.3.1–7.3.9; https://doi.org/10.1002/0471140856.tx0703s0010.1002/0471140856.tx0703s00
  18. 18. W. A. Günzler, H. Kremers and L. Flohé, An improved coupled test procedure for glutathione peroxidase (EC 1-11-1-9-) in blood, Z. Klin. Chem. Klin. Biochem. 12 (1974) 444–448; https://doi.org/10.1515/cclm.1974.12.10.444.10.1515/cclm.1974.12.10.444
  19. 19. H. Aebi, Catalase in vitro, Methods Enzymol. 105 (1984) 121–126; https://doi.org/10.1016/S0076-6879(84)05016-310.1016/S0076-6879(84)05016-3
  20. 20. Ö. Erel, A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation, Clin. Biochem. 37 (2004) 277–285; https://doi.org/10.1016/j.clinbiochem.2003.11.01510.1016/j.clinbiochem.2003.11.01515003729
  21. 21. Ö. Erel, A new automated colorimetric method for measuring total oxidant status, Clin. Biochem. 38 (2005) 1103–1111; https://doi.org/10.1016/j.clinbiochem.2005.08.00810.1016/j.clinbiochem.2005.08.00816214125
  22. 22. O. B. Acikara, J. Hošek, P. Babula, J. Cvačka, M. Budešínský, M. Dračinský, G. S. İşcan, D. Kadlecová, L. Ballová and K. Šmejkal, Turkish Scorzonera species extracts attenuate cytokine secretion via inhibition of NF-κB activation, showing anti-inflammatory effect in vitro, Molecules21 (2016) Article ID 43 (14 pages); https://doi.org/10.3390/molecules2101004310.3390/molecules21010043627453826729082
  23. 23. S. Dall’Acqua, G. Ak, S. Sut, I. Ferrarese, G. Zengin, E. Yıldıztugay, M. F. Mahomoodally, K. I. Sinan, and D. Lobine, Phenolics from Scorzonera tomentosa L.: Exploring the potential use in industrial applications via an integrated approach, Ind. Crops Prod. 154 (2020) 112751–112760; https://doi.org/10.1016/j.indcrop.2020.11275110.1016/j.indcrop.2020.112751
  24. 24. Institute of Medicine, Dietary Reference Intakes: The Essential Guide to Nutrient Requirements, The National Academies Press, Washington DC 2006, pp. 286–402; https://doi.org/10.17226/1153710.17226/11537
  25. 25. F. Taranto, A. Pasqualone, G. Mangini, P. Tripodi, M. M. Miazzi, S. Pavan and C. Montemurro, Polyphenol oxidases in crops: Biochemical, physiological and genetic aspects, Int. J. Mol. Sci. 18 (2017) 377–393; https://doi.org/10.3390/ijms1802037710.3390/ijms18020377534391228208645
  26. 26. R. Khattaba, G. B. Celli, A. Ghanem and M. S. Brooks, Effect of frozen storage on polyphenol content and antioxidant activity of haskap berries (Lonicera caerulea L.), J. Berry Res. 5 (2015) 231–242; https://doi.org/10.3233/JBR-15010510.3233/JBR-150105
  27. 27. K. T. Kongstad, C. Ozdemir, A. Barzak, S. G. Wubshet and D. Staerk, Combined use of high-resolution α-glucosidase inhibition profiling and high-performance liquid chromatography-high-resolution mass spectrometry-solid-phase extraction-nuclear magnetic resonance spectroscopy for investigation of antidiabetic principles in crude plant extracts, J. Agric. Food Chem. 63 (2015) 2257–2263; https://doi.org/10.1021/jf506297k10.1021/jf506297k25652946
  28. 28. D. Bagdas, B. C. Etoz, Z. Gul, S. Ziyanok, S. Inan, O. Turacozen, N. Y. Gul, A. Topal, N. Cinkilic, S. Tas, M. O. Ozyigit and M. S. Gurun, In vivo systemic chlorogenic acid therapy under diabetic conditions: Wound healing effects and cytotoxicity/genotoxicity profile, Food Chem. Toxicol. 81 (2015) 54–61; https://doi.org/10.1016/j.fct.2015.04.00110.1016/j.fct.2015.04.00125846499
  29. 29. W. Blaschek, Natural products as lead compounds for sodium glucose cotransporter (SGLT) inhibitors, Planta Med. 83 (2017) 985–993; https://doi.org/10.1055/s-0043-10605010.1055/s-0043-10605028395363
  30. 30. C. Schulze, A. Bangert, G. Kottra, K. E. Geillinger, B. Schwanck, H. Vollert, W. Blaschek and H. Daniel, Inhibition of the intestinal sodium-coupled glucose transporter 1 (SGLT1) by extracts and polyphenols from apple reduces postprandial blood glucose levels in mice and humans, Mol. Nutr. Food Res. 58 (2014) 1795–1808; https://doi.org/10.1002/mnfr.20140001610.1002/mnfr.20140001625074384
  31. 31. S. Meng, J. Cao, Q. Feng, J. Peng and Y. Hu, Roles of chlorogenic acid on regulating glucose and lipids metabolism: A review, Evid-Based Complement. Alternat. Med. 2013 (2013) Article ID 801457 (11 pages); https://doi.org/10.1155/2013/80145710.1155/2013/801457376698524062792
  32. 32. V. R. Punithavathi, P. S. M. Prince, R. Kumar and J. Selvakumari, Antihyperglycaemic, antilipid peroxidative and antioxidant effects of gallic acid on streptozotocin induced diabetic Wistar rats, Eur. J. Pharmacol. 650 (2011) 465–471; https://doi.org/10.1016/j.ejphar.2010.08.05910.1016/j.ejphar.2010.08.05920863784
  33. 33. A. Bashta, N. Ivchuk and O. Bashta, Yacón and Scorzonera as functional enrichment of food, Ukrainian J. Food Sci. 3 (2015) 13–22.
  34. 34. N. Petkova, Characterization of inulin from black salsify (Scorzonera hispanica L.) for food and pharmaceutical purposes, Asian J. Pharm. Clin. Res. 11 (2018) 221–225; https://doi.org/10.22159/ajpcr.2018.v11i12.2826210.22159/ajpcr.2018.v11i12.28262
  35. 35. M. Rao, C. Gao, L. Xu, L. Jiang, J. Zhu, G. Chen, B. Y. K. Law and Y. Xu, Effect of inulin-type carbohydrates on insulin resistance in patients with type 2 diabetes and obesity: A systematic review and meta-analysis, J. Diabetes Res. 2019 (2019) Article ID 5101423 (13 pages); https://doi.org/10.1155/2019/510142310.1155/2019/5101423673264231534973
  36. 36. P. I. Ingaramo, M. T. Ronco, D. E. A. Francés, J. A. Monti, G. B. Pisani, M. P. Ceballos, M. Galleano, M. C. Carrillo and C. E. Carnovale, Tumor necrosis factor alpha pathways develops liver apoptosis in type 1 diabetes mellitus, Mol. Immunol. 48 (2011) 1397–1407; https://doi.org/10.1016/j.molimm.2011.03.01510.1016/j.molimm.2011.03.01521481476
  37. 37. T. Zhang, Y. Xie, Z. Zhang and G. Wang, Study on hepatoprotective effects of total flavonoids in Scorzonera austriaca Wild in vivo and in vitro, Chin. J. Biochem. Pharm. 35 (2015) 6–9.
  38. 38. F. K. Lutchmansingh, J. W. Hsu, F. I. Bennett, A. V. Badaloo, N. McFarlane-Anderson, G. M. Gordon-Strachan, R. A. Wright-Pascoe, F. Jahoor and M. S. Boyn, Glutathione metabolism in type 2 diabetes and its relationship with microvascular complications and glycemia, PLoS ONE13 (2018) e0198626 (12 pages); https://doi.org/10.1371/journal.pone.019862610.1371/journal.pone.0198626599167929879181
  39. 39. L. J. Yan, Redox imbalance stress in diabetes mellitus: Role of the polyol pathway, Animal Model Exp. Med. 1 (2018) 7–13; https://doi.org/10.1002/ame2.1200110.1002/ame2.12001597537429863179
  40. 40. H. Yang and C. Zeng, Effects of water extract from Scorzonera sinensis Lipsch, Pteridium aquilinum and Sonchus oleraceus L. on plasma-lipids metabolism in mice fed high fats diet, Food Res. Dev. 36 (2015) 11–13; https://doi.org/10.3969/j.issn.1005-6521.2015.06.003
DOI: https://doi.org/10.2478/acph-2021-0045 | Journal eISSN: 1846-9558 | Journal ISSN: 1330-0075
Language: English
Page range: 603 - 617
Accepted on: Dec 15, 2020
Published on: Apr 3, 2021
Published by: Croatian Pharmaceutical Society
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year
Related subjects:

© 2021 Mehmet Ali Temiz, published by Croatian Pharmaceutical Society
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.