Have a personal or library account? Click to login
New derivatives of sulfonylhydrazone as potential antitumor agents: Design, synthesis and cheminformatics evaluation Cover

New derivatives of sulfonylhydrazone as potential antitumor agents: Design, synthesis and cheminformatics evaluation

Open Access
|Apr 2021

References

  1. 1. B. Vanhaesebroeck, L. Stephens and P. Hawkins, PI3K signalling: the path to discovery and understanding, Nat. Rev. Mol. Cell Biol.13 (2012) 195–203; https://doi.org/10.1038/nrm329010.1038/nrm329022358332
  2. 2. I. Vivanco and C. L. Sawyers, The phosphatidylinositol 3-kinase-AKT pathway in human cancer, Nat. Rev. Cancer2 (2002) 489–501; https://doi.org/10.1038/mrc839
  3. 3. B. Vanhaesebroeck and M. D. Waterfield, Signaling by distinct classes of phosphoinositide 3-kinases, Exp. Cell Res.253 (1999) 239–254; https://doi.org/10.1006/excr.1999.470110.1006/excr.1999.470110579926
  4. 4. L. C. Cantley, The phosphoinositide 3-kinase pathway, Science296 (2002) 1655–1657; https://doi.org/10.1126/science.296.5573.165510.1126/science.296.5573.165512040186
  5. 5. C.-H. Huang, D. Mandelker, O. Schmidt-Kittler, Y. Samuels, V. E. Velculescu, K. W. Kinzler, B. Vogelstein, S. B. Gabelli and L. M. Amzel, The structure of a human p110 alpha/p85 alpha complex elucidates the effects of oncogenic PI3K alpha mutations, Science318 (2007) 1744–1748; https://doi.org/10.1126/science.115079910.1126/science.115079918079394
  6. 6. N. Miled, Y. Yan, W.-C. Hon, O. Perisic, M. Zvelebil, Y. Inbar, D. Schneidman-Duhovny, H. J. Wolf-son, J. M. Backer and R. L. Williams, Mechanism of two classes of cancer mutations in the phosphoinositide 3-kinase catalytic subunit, Science317 (2007) 239–242; https://doi.org/10.1126/science.113539410.1126/science.113539417626883
  7. 7. L. Zhao and P. K. Vogt, Helical domain and kinase domain mutations in p110 alpha of phosphatidylinositol 3-kinase induce gain of function by different mechanisms, Proc. Natl. Acad. Sci. USA.105 (2008) 2652–2657; https://doi.org/10.1073/pnas.071216910510.1073/pnas.0712169105226819118268322
  8. 8. Y. Samuels and V. E. Velculescu, Oncogenic mutations of PIK3CA in human cancers, Cell Cycle3 (2004) 1221–1224; https://doi.org/10.4161/cc.3. https://doi.org/10.1164
  9. 9. Y. Samuels, L. A. Diaz, O. Schmidt-Kittler, J. M. Cummins, L. DeLong, I. Cheong, C. Rago, D. L. Huso, C. Lengauer, K. W. Kinzler, B. Vogelstein and V. E. Velculescu, Mutant PIK3CA promotes cell growth and invasion of human cancer cells, Cancer Cell7 (2005) 561–573; https://doi.org/10.1016/j.ccr.2005.05.014.10.1016/j.ccr.2005.05.01415950905
  10. 10. P. Liu, H. Cheng, S. Santiago, M. Raeder, F. Zhang, A. Isabella, J. Yang, D. J. Semaan, C. Chen, E. A. Fox, N. S. Gray, J. Monahan, R. Schlegel, R. Beroukhim, G. B. Mills and J. J. Zhao, Oncogenic PIK3CA-driven mammary tumors frequently recur via PI3K pathway-dependent and PI3K pathway-independent mechanisms, Nat. Med.17 (2011) 1116–1120; https://doi.org/10.1038/nm.240210.1038/nm.2402316972421822287
  11. 11. L. Zhao and P. K. Vogt, Hot-spot mutations in p110α of phosphatidylinositol 3-kinase (PI3K): differential interactions with the regulatory subunit p85 and with RAS, Cell Cycle9 (2010) 596–600; https://doi.org/10.4161/cc.9.3.1059910.4161/cc.9.3.10599283581520009532
  12. 12. P. Liu, H. Cheng, T. M. Roberts and J. J. Zhao, Targeting the phosphoinositide 3-kinase pathway in cancer, Nat. Rev. Drug Discov.8 (2009) 627–644; https://doi.org/10.1038/nrd292610.1038/nrd2926314256419644473
  13. 13. T. M. Bauer, M. R. Patel and J. R. Infante, Targeting PI3 kinase in cancer, Pharmacol. Ther.146 (2015) 53–60; https://doi.org/10.1016/j.pharmthera.2014.09.00610.1016/j.pharmthera.2014.09.00625240910
  14. 14. M. Cully, H. You, A. J. Levine and T. W. Mak, Beyond PTEN mutations: the PI3K pathway as an integrator of multiple inputs during tumorigenesis, Nat. Rev. Cancer6 (2006) 184–192; https://doi.org/10.1038/nrc181910.1038/nrc181916453012
  15. 15. A. Carracedo and P. P. Pandolfi, The PTEN-PI3K pathway: of feedbacks and cross-talks, Oncogene27 (2008) 5527–5541; https://doi.org/10.1038/onc.2008.24710.1038/onc.2008.24718794886
  16. 16. M. Hayakawa, H. Kaizawa, H. Moritomo, T. Koizumi, T. Ohishi, M. Okada, M. Ohta, S.-I. Tsukamoto, P. Parker, P. Workman and M. Waterfield, Synthesis and biological evaluation of 4-morpholino-2-phenylquinazolines and related derivatives as novel PI3 kinase p110 alpha inhibitors, Bioorg. Med. Chem.14 (2006) 6847–6858; https://doi.org/10.1016/j.bmc.2006.06.04610.1016/j.bmc.2006.06.04616837202
  17. 17. M. Hayakawa, H. Kaizawa, K.-I. Kawaguchi, N. Ishikawa, T. Koizumi, T. Ohishi, M. Yamano, M. Okada, M. Ohta, S.-I. Tsukamoto, F. I. Raynaud, M. D. Waterfield, P. Parker and P. Workman, Synthesis and biological evaluation of imidazo[1,2-a]pyridine derivatives as novel PI3 kinase p110 alpha inhibitors, Bioorg. Med. Chem.15 (2007) 403–412; https://doi.org/10.1016/j.bmc.2006.09.04710.1016/j.bmc.2006.09.04717049248
  18. 18. M. Hayakawa, H. Kaizawa, H. Moritomo, T. Koizumi, T. Ohishi, M. Yamano, M. Okada, M. Ohta, S. Tsukamoto, F. I. Raynaud, P. Workman, M. D. Waterfield and P. Parker, Synthesis and biological evaluation of pyrido[3’,2’:4,5]furo[3,2-d]pyrimidine derivatives as novel PI3 kinase p110alpha inhibitors, Bioorg. Med. Chem. Lett.17 (2007) 2438–2442; https://doi.org/10.1016/j.bmcl.2007.02.03210.1016/j.bmcl.2007.02.03217339109
  19. 19. D. A. Sabbah, N. A. Simms, W. Wang, Y. Dong, E. L. Ezell, M. G. Brattain, J. L. Vennerstrom and H. A. Zhong, N-phenyl-4-hydroxy-2-quinolone-3-carboxamides as selective inhibitors of mutant H1047R phosphoinositide-3-kinase (PI3Kα), Bioorg. Med. Chem.20 (2012) 7175–7183; https://doi.org/10.1016/j.bmc.2012.09.05910.1016/j.bmc.2012.09.05923121722
  20. 20. D. A. Sabbah, B. Hishmah, K. Sweidan, S. Bardaweel, M. AlDamen, H. A. Zhong, R. Abu Khalaf, I. Hasan, T. Al-Qirim and G. Abu Sheikha, Structure-based design: Synthesis, X-ray crystallography, and biological evaluation of N-substituted-4-hydroxy-2-quinolone-3-carboxamides as potential cytotoxic agents, Anticancer Agents Med. Chem.18 (2018) 263–276; https://doi.org/10.2174/187152061766617091117115210.2174/187152061766617091117115228901259
  21. 21. D. A. Sabbah, F. Al-Tarawneh, W. H. Talib, K. Sweidan, S. K. Bardaweel, E. Al-Shalabi, H. A. Zhong, G. Abu Sheikha, R. Abu Khalaf and M. S. Mubarak, Benzoin Schiff bases: Design, synthesis, and biological evaluation as potential antitumor agents, Med. Chem.14 (2018) 695–708; https://doi.org/10.2174/157340641466618041216014210.2174/157340641466618041216014229651943
  22. 22. D. A. Sabbah, A. H. Ibrahim, W. H. Talib, K. M. Alqaisi, K. Sweidan, S. K. Bardaweel, G. A. Sheikha, H. A. Zhong, E. Al-Shalabi and R. A. Khalaf, Ligand-based drug design: Synthesis and biological evaluation of substituted benzoin derivatives as potential antitumor agents, Med. Chem.15 (2019) 417–429; https://doi.org/10.2174/157340641466618091211184610.2174/157340641466618091211184630207238
  23. 23. D. Kong and T. Yamori, Advances in development of phosphatidylinositol 3-kinase inhibitors, Curr. Top. Med. Chem.16 (2009) 2839–2854; https://doi.org/10.2174/09298670978880322210.2174/09298670978880322219689267
  24. 24. D. A. Sabbah, M. G. Brattain and H. A. Zhong, Dual inhibitors of PI3K/mTOR or mTOR-selective inhibitors: Which way shall we go?, Curr. Med. Chem.18 (2011) 5528–5544; https://doi.org/10.2174/09298671179834729810.2174/09298671179834729822172063
  25. 25. D. A. Sabbah, J. Hu and H. A. Zhong, Advances in the development of class I phosphoinositide 3-kinase (PI3K), Curr. Top. Med. Chem.16 (2016) 1413–1426; https://doi.org/10.2174/156802661566615091511582310.2174/156802661566615091511582326369826
  26. 26. National Institutes of Health, National Cancer Institute, NCI Open Database Compounds, Release 4, NCI, Bethesda (MD) 2012; http://cactus.nci.nih.gov/download/nci, last access date June 15, 2017
  27. 27. D. A. Sabbah, N. A. Simms, M. G. Brattain, J. L. Vennerstrom and H. Zhong, Biological evaluation and docking studies of recently identified inhibitors of phosphoinositide-3-kinases, Bioorg. Med. Chem. Lett.22 (2012) 876–880; https://doi.org/10.1016/j.bmcl.2011.12.04410.1016/j.bmcl.2011.12.044447244622212721
  28. 28. D. A. Sabbah, M. Saada, R. A. Khalaf, S. Bardaweel, K. Sweidan, T. Al-Qirim, A. Al-Zughier, H. A. Halim and G. A. Sheikha, Molecular modeling based approach, synthesis, and cytotoxic activity of novel benzoin derivatives targeting phosphoinostide 3-kinase (PI3Kα), Bioorg. Med. Chem. Lett.25 (2015) 3120–3124; http://dx.doi.org/https://doi.org/10.1016/j.bmcl.2015.06.01110.1016/j.bmcl.2015.06.01126099539
  29. 29. H. A. Younus, A. Hameed, A. Mahmood, M. S. Khan, M. Saeed, F. Batool, A. Asari, H. Mohamad, J. Pelletier, J. Sévigny, J. Iqbal and M. al-Rashida, Sulfonylhydrazones: Design, synthesis and investigation of ectonucleotidase (ALP & e5′NT) inhibition activities, Bioorg. Chem.100 (2020) Article ID 103827; https://doi.org/https://doi.org/10.1016/j.bioorg.2020.10382710.1016/j.bioorg.2020.10382732402802
  30. 30. W. H. Talib and A. M. Mahasneh, Antiproliferative activity of plant extracts used against cancer in traditional medicine, Sci. Pharm.78 (2010) 33–46; https://doi.org/10.3797/scipharm.0912-1110.3797/scipharm.0912-11300282621179373
  31. 31. W. H. Talib, Consumption of garlic and lemon aqueous extracts combination reduces tumor burden by angiogenesis inhibition, apoptosis induction, and immune system modulation, Nutr. J.43–44 (2017) 89–97; https://doi.org/https://doi.org/10.1016/j.nut.2017.06.01510.1016/j.nut.2017.06.01528935151
  32. 32. W. H. Talib, Regressions of breast carcinoma syngraft following treatment with piperine in combination with thymoquinone, Sci. Pharm.85 (2017) 27–38; https://doi.org/10.3390/scipharm8503002710.3390/scipharm85030027562051528671634
  33. 33. W. H. Talib and L. T. Al Kury, Parthenolide inhibits tumor-promoting effects of nicotine in lung cancer by inducing P53 – dependent apoptosis and inhibiting VEGF expression, Biomed. Pharmacother.107 (2018) 1488–1495; https://doi.org/10.1016/j.biopha.2018.08.13910.1016/j.biopha.2018.08.13930257366
  34. 34. D. A. Sabbah, J. L. Vennerstrom and H. Zhong, Docking studies on isoform-specific inhibition of phosphoinositide-3-kinases, J. Chem. Inf. Model.50 (2010) 1887–1898; https://doi.org/https://doi.org/10.1021/ci100267910.1021/ci1002679448077220866085
  35. 35. D. Mandelker, S. B. Gabelli, O. Schmidt-Kittler, J. Zhu, I. Cheong, C.-H. Huang, K. W. Kinzler, B. Vogelstein and L. M. Amzel, A frequent kinase domain mutation that changes the interaction between PI3K alpha and the membrane, Proc. Natl. Acad. Sci. USA106 (2009) 16996–7001; https://doi.org/10.1073/pnas.090844410610.1073/pnas.0908444106276133419805105
  36. 36. Protein Preparation Wizard, Maestro, Macromodel, and QPLD-dock, Schrödinger, LLC, Portland, (OR), 2016
  37. 37. R. Hajjo, C. M. Grulke, A. Golbraikh, V. Setola, X.-P. Huang, B. L. Roth and A. Tropsha, Development, Validation, and use of quantitative structure-activity relationship models of 5-hydroxytryptamine (2B) receptor ligands to identify novel receptor binders and putative valvulopathic compounds among common drugs, J. Med. Chem.53 (2010) 7573–7586; https://doi.org/10.1021/jm100600y10.1021/jm100600y343829220958049
  38. 38. Alvascience, alvaDesc (software for molecular descriptors calculation) version 1.0.18, 2020, Lecco, Italy; https://www.alvascience.com
  39. 39. D. Szklarczyk, J. H. Morris, H. Cook, M. Kuhn, S. Wyder, M. Simonovic, A. Santos, N. T. Doncheva, A. Roth, P. Bork, L. J. Jensen and C. von Mering, The STRING database in 2017: quality-controlled protein–protein association networks, made broadly accessible, Nucleic Acids Res.45 (2016) D362– D368; https://doi.org/10.1093/nar/gkw93710.1093/nar/gkw937521063727924014
  40. 40. M. Kanehisa, M. Araki, S. Goto, M. Hattori, M. Hirakawa, M. Itoh, T. Katayama, S. Kawashima, S. Okuda, T. Tokimatsu and Y. Yamanishi, KEGG for linking genomes to life and the environment, Nucleic Acids Res.36 (2007) D480–D484; https://doi.org/10.1093/nar/gkm88210.1093/nar/gkm882223887918077471
  41. 41. M. G. Brattain, A. E. Levine, S. Chakrabarty, L. C. Yeoman, J. K. V. Willson and B. Long, Heterogeneity of human colon carcinoma, Cancer Metastasis Rev.3 (1984) 177–191; https://doi.org/10.1007/bf0004838410.1007/BF000483846437669
  42. 42. J. Karar and A. Maity, PI3K/AKT/mTOR pathway in angiogenesis, Front. Mol. Neurosci.4 (2011) Article ID 51; https://doi.org/10.3389/fnmol.2011.0005110.3389/fnmol.2011.00051322899622144946
  43. 43. W. H. Talib, S. A. Al-Hadid, M. B. W. Ali, I. H. Al-Yasari and M. R. A. Ali, Role of curcumin in regulating p53 in breast cancer: an overview of the mechanism of action, Breast Cancer (Dove Med Press)10 (2018) 207–217; https://doi.org/10.2147/bctt.s16781210.2147/BCTT.S167812627663730568488
  44. 44. R. A. Friesner, J. L. Banks, R. B. Murphy, T. A. Halgren, J. J. Klicic, D. T. Mainz, M. P. Repasky, E. H. Knoll, M. Shelley, J. K. Perry, D. E. Shaw, P. Francis, P. S. Shenkin, Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy, J. Med. Chem.47 (2004) 1739–1749; https://doi.org/10.1021/jm030643010.1021/jm030643015027865
  45. 45. R. A. Friesner, R. B. Murphy, M. P. Repasky, L. L. Frye, J. R. Greenwood, T. A. Halgren, P. C. Sanschagrin, D. T. Mainz, Extra precision glide:  Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes, J. Med. Chem.49 (2006) 6177–6196; https://doi.org/10.1021/jm051256o10.1021/jm051256o17034125
  46. 46. K. Sweidan, D. A. Sabbah, S. Bardaweel, K. A. Dush, G. A. Sheikha, M. S. Mubarak, Computer-aided design, synthesis, and biological evaluation of new indole-2-carboxamide derivatives as PI3Kα/EGFR inhibitors, Bioorg. Med. Chem. Lett.26 (2016) 2685–2690; https://doi.org/10.1016/j.bmcl.2016.04.01110.1016/j.bmcl.2016.04.01127084677
  47. 47. Y. Zhao, X. Zhang, Y. Chen, S. Lu, Y. Peng, X. Wang, C. Guo, A. Zhou, J. Zhang, Y. Luo, Q. Shen, J. Ding, L. Meng and J. Zhang, Crystal structures of PI3Kα complexed with PI103 and its derivatives: new directions for inhibitors design, ACS Med. Chem. Lett.5 (2014) 138–142; https://doi.org/10.1021/ml400378e10.1021/ml400378e402762824900786
  48. 48. D. J. Adams and L. R. Morgan, Tumor physiology and charge dynamics of anticancer drugs: implications for camptothecin-based drug development, Curr. Med. Chem.18 (2011) 1367–1372; https://doi.org/10.2174/09298671179502960910.2174/092986711795029609308683721366528
  49. 49. J. W. Godden, L. Xue and J. Bajorath, Combinatorial preferences affect molecular similarity/diversity calculations using binary fingerprints and Tanimoto coefficients, J. Chem. Inf. Comput. Sci.40 (2000) 163–166; https://doi.org/10.1021/ci990316u10.1021/ci990316u10661563
  50. 50. A. Kamal, S. Azeeza, E. V. Bharathi, M. S. Malik and R. V. Shetti, Search for new and novel chemotherapeutics for the treatment of human malignancies, Mini Rev. Med. Chem.10 (2010) 405–435; https://doi.org/10.2174/13895571079133091810.2174/13895571079133091820370699
  51. 51. A. Kamal, Y. V. V. Srikanth, M. Ashraf, M. N. A. Khan, T. B. Shaik, S. V. Kalivendi, N. Suri and A. K. Saxena, Synthesis and anticancer activities of new benzothiadiazinyl hydrazinecarboxamides and anilino[1,2,4]triazolo[1,5-b][1,2,4]thiadiazine 5,5-diones, Med. Chem.7 (2011) 165–172; https://doi.org/10.2174/15734061179556425910.2174/15734061179556425921486211
  52. 52. A. Martinez, C. Gil, A. Castro, A. M. Bruno, C. Pérez, C. Prieto and J. Otero, Benzothiadiazine dioxide human cytomegalovirus inhibitors: synthesis and antiviral evaluation of main hetero-cycle modified derivatives, Antivir. Chem. Chemother.14 (2003) 107–114; https://doi.org/10.1177/09563202030140020610.1177/09563202030140020612856922
  53. 53. E. Goffin, T. Drapier, A. P. Larsen, P. Geubelle, C. P. Ptak, S. Laulumaa, K. Rovinskaja, J. Gilissen, P. de Tullio, L. Olsen, K. Frydenvang, B. Pirotte, J. Hanson, R. E. Oswald, J. S. Kastrup and P. Fran-cotte, 7-Phenoxy-substituted 3,4-dihydro-2H-1,2,4-benzothiadiazine 1,1-dioxides as positive allosteric modulators of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors with nanomolar potency, J. Med. Chem.61 (2018) 251–264; https://doi.org/10.1021/acs.jmedchem.7b0132310.1021/acs.jmedchem.7b01323605235629256599
  54. 54. The Molecular Operating, Environment Chemical Computing Group, Inc., Montreal (Quebec) Canada, 2016
DOI: https://doi.org/10.2478/acph-2021-0043 | Journal eISSN: 1846-9558 | Journal ISSN: 1330-0075
Language: English
Page range: 545 - 565
Accepted on: Dec 8, 2020
Published on: Apr 3, 2021
Published by: Croatian Pharmaceutical Society
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year
Related subjects:

© 2021 Dima A. Sabbah, Bara’a A. Al-Azaideh, Wamidh H. Talib, Rima Hajjo, Kamal Sweidan, Aya M. Al-Zuheiri, Ghassan Abu Sheikha, Sawsan Shraim, published by Croatian Pharmaceutical Society
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.