References
- 1. R. A. Lionberger, S. L. Lee, L. M. Lee, A. Raw and L. X. Yu, Quality by design: Concepts for ANDAs, AAPS J.10 (2008) 268–276; https://doi.org/10.1208/s12248-008-9026-710.1208/s12248-008-9026-7275137618465252
- 2. K. Pramod, M. Tahir, N. Charoo, S. Ansari and J. Ali, Pharmaceutical product development: A quality by design approach, Int. J. Pharm. Investig.6 (2016) 129–138; https://doi.org/10.4103/2230-973x.18735010.4103/2230-973X.187350499112127606256
- 3. International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use, ICH Harmonised Tripartite Guideline, Pharmaceutical Development, Q8(R2), Current Step 5 version, August 2009; https://www.ema.europa.eu/en/documents/scientific-guideline/international-conference-harmonisation-technical-requirements-registration-pharmaceuticals-human-use_en-11.pdf; access date: October 26, 2020
- 4. International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use, ICH Harmonised Tripartite Guideline, Quality Risk Management, Q9, Current Step 5 version, August 2009; https://www.ema.europa.eu/en/documents/scientific-guideline/international-conference-harmonisation-technical-requirements-registration-pharmaceuticals-human-use_en-11.pdf; access date: October 26, 2020
- 5. Y. Bouwman-Boer and L. Møller Andersen, Pharmaceutical Quality Systems, in Practical Pharmaceutics (Ed. Y. Bouwman-Boer, L. Møller Andersen and P. Le Brun), Springer Nature, Cham (Switzerland) 2015, pp. 769–796.10.1007/978-3-319-15814-3_35
- 6. International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use, Development and manufacture of drug substances (chemical entities and biotechnological/biological entities), Q11, Current Step 3 version, September 2011; https://www.ema.europa.eu/en/documents/scientific-guideline/draft-ich-guideline-q11-development-manufacture-drug-substances-chemical-entities-biotechnological/biological-entities_en.pdf; access date: October 26, 2020
- 7. International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use, Technical and regulatory considerations for pharmaceutical product lifecycle management, Q12, Current Step 5 version, January 2020; https://www.ema.europa.eu/en/documents/scientific-guideline/ich-guideline-q12-technical-regulatory-considerations-pharmaceutical-product-lifecycle-management_en.pdf; access date: October 26, 2020
- 8. L. X. Yu, G. Amidon, M. A. Khan, S. W. Hoag, J. Polli, G. K. Raju and J. Woodcock, Understanding pharmaceutical quality by design, AAPS J.16 (2014) 771–783; https://doi.org/10.1208/s12248-014-9598-310.1208/s12248-014-9598-3407026224854893
- 9. International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use, Continuous Manufacturing of Drug Substances and Drug Products, Q13, Final Concept Paper, November 2018; https://database.ich.org/sites/default/files/Q13_EWG_Concept_Paper.pdf; access date: October 26, 2020
- 10. International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use, Analytical Procedure Development and Revision of Q2(R1) Analytical Validation Q14, Final Concept Paper, November 2018; https://database.ich.org/sites/default/files/Q2R2-Q14_EWG_Concept_Paper.pdf; access date: October 26, 2020
- 11. J. Cook, M. T. Cruañes, M. Gupta, S. Riley and J. Crison, Quality-by-design: Are we there yet?, AAPS PharmSciTech15 (2014) 140–148; https://doi.org/10.1208/s12249-013-0043-110.1208/s12249-013-0043-1390915324218058
- 12. H. B. Grangeia, C. Silva, S. P. Simões and M. S. Reis, Quality by design in pharmaceutical manufacturing: A systematic review of current status, challenges and future perspectives, Eur. J. Pharm. Biopharm.147 (2020) 19–37; https://doi.org/10.1016/j.ejpb.2019.12.00710.1016/j.ejpb.2019.12.00731862299
- 13. A. Aloqaily, Identification of Hazards Associated with Pipelines, in Cross-Country Pipeline Risk Assessments and Mitigation Strategies (Ed. A. Aloqaily), Elsevier, Amsterdam 2018, pp. 13–40.10.1016/B978-0-12-816007-7.00002-0
- 14. J. W. Vincoli, Preliminary Hazard Analysis, in Basic Guideline to System. Safety (Ed. J. W. Voncoli), 3rd Edition, Wiley, Hoboken (NJ) 2014, pp. 71–91.10.1002/9781118904589.ch6
- 15. A. F. Molland, Marine Safety, in The Maritime Engineering Reference Book (Ed. A. F. Molland), Elsevier, Amsterdam 2008, pp. 784–875.10.1016/B978-0-7506-8987-8.00011-1
- 16. G. Ilie and C. Ciocoiu, Application of fishbone diagram to determine the risk of an event with multiple causes, Manag. Res. Pract.2 (2010) 1–20.
- 17. M. A. Barsalou, The Quality Improvement Field Guide: Achieving and Maintaining Value in Your Organization, Taylor & Francis, Oxfordshire 2016.10.1201/b19522
- 18. T. Aven, Risk assessment and risk management: Review of recent advances on their foundation, Eur. J. Oper. Res.253 (2016) 1–13; https://doi.org/10.1016/j.ejor.2015.12.02310.1016/j.ejor.2015.12.023
- 19. J. F. van Leeuwen, M. J. Nauta, D. de Kaste, Y. M. C. F. Odekerken-Rombouts, M. T. Oldenhof, M. J. Vredenbregt and D. M. Barends, Risk analysis by FMEA as an element of analytical validation, J. Pharm. Biomed. Anal.50 (2009) 1085–1087; https://doi.org/10.1016/j.jpba.2009.06.04910.1016/j.jpba.2009.06.04919640668
- 20. M. T. Oldenhof, J. F. van Leeuwen, M. J. Nauta, D. de Kaste, Y. M. C. F. Odekerken-Rombouts, M. J. Vredenbregt, M. Weda and D. M. Barends, Consistency of FMEA used in the validation of analytical procedures, J. Pharm. Biomed. Anal.54 (2011) 592–595; https://doi.org/10.1016/j.jpba.2010.09.02410.1016/j.jpba.2010.09.02420970277
- 21. R. Fahmy, R. Kona, R. Dandu, W. Xie, G. Claycamp and S. W. Hoag, Quality by design I: Application of failure mode effect analysis (FMEA) and Plackett-Burman design of experiments in the identification of “main factors” in the formulation and process design space for roller-compacted ciprofloxacin hydrochloride immediate, AAPS PharmSciTech13 (2012) 1243–1254; https://doi.org/10.1208/s12249-012-9844-x10.1208/s12249-012-9844-x351347522993122
- 22. N. A. Wessiani and F. Yoshio, Failure mode effect analysis and fault tree analysis as a combined methodology in risk management, IOP Conference Series: Materials Science and Engeneering.337 (2018) Article ID 012033 (11 pages); https://doi.org/10.1088/1757-899X/337/1/01203310.1088/1757-899X/337/1/012033
- 23. M. W. Averett, Fault Tree Analysis, Risk Analysis8 (1988) 463–464; https://doi.org/10.1111/j.1539-6924.1988.tb00510.x10.1111/j.1539-6924.1988.tb00510.x
- 24. S. Iurian, L. Turdean and I. Tomuta, Risk assessment and experimental design in the development of a prolonged release drug delivery system with paliperidone, Drug Des. Devel. Ther.11 (2017) 733–746; https://doi.org/10.2147/DDDT.S12532310.2147/DDDT.S125323535707328331293
- 25. S. M. Mishra and B. D. Rohera, An integrated, quality by design (QbD) approach for design, development and optimization of orally disintegrating tablet formulation of carbamazepine, Pharm. Dev. Technol.22 (2017) 889–903; https://doi.org/10.1080/10837450.2016.119956610.1080/10837450.2016.119956627346282
- 26. X. Zhang and C. Hu, Application of quality by design concept to develop a dual gradient elution stability-indicating method for cloxacillin forced degradation studies using combined mixture-process variable models, J. Chromatogr. A1514 (2017) 44–53; https://doi.org/10.1016/j.chroma.2017.07.06210.1016/j.chroma.2017.07.06228760604
- 27. G. L. Reid, G. Cheng, D. T. Fortin, J. W. Harwood, J. E. Morgado, J. Wang and G. Xue, Reversed-phase liquid chromatographic method development in an analytical quality by design framework, J. Liq. Chromatogr. Relat. Technol.36 (2013) 2612–2638; https://doi.org/10.1080/10826076.2013.76545710.1080/10826076.2013.765457
- 28. P. Borman, M. Chatfield, P. Nethercote, D. Thompson and K. Truman, The application of quality by design to analytical methods, Pharm. Technol.31 (2007) 142–152.
- 29. B. Pasquini, S. Orlandini, M. Villar-Navarro, C. Caprini, M. Del Bubba, M. Douša, A. Giuffrida, R. Gotti and S. Furlanetto, Chiral capillary zone electrophoresis in enantioseparation and analysis of cinacalcet impurities: Use of Quality by Design principles in method development, J. Chromatogr. A1568 (2018) 205–213; https://doi.org/10.1016/j.chroma.2018.07.02110.1016/j.chroma.2018.07.02130005942
- 30. S. Krait and G. K. E. Scriba, Quality by design-assisted development of a capillary electrophoresis method for the chiral purity determination of dexmedetomidine, Electrophoresis39 (2018) 2575–2580; https://doi.org/10.1002/elps.20180010010.1002/elps.20180010029600596
- 31. L. Zhou, J. M. Socha, F. G. Vogt, S. Chen and A. S. Kord, A systematic method development strategy for water determinations in drug substance using Karl Fischer titrations, Am. Pharm. Rev.13 (2010) 74–84.
- 32. L. Zhou, F. G. Vogt, P. A. Overstreet, J. T. Dougherty, J. S. Clawson and A. S. Kord, A systematic method development strategy for quantitative color measurement in drug substances, starting materials, and synthetic intermediates, J. Pharm. Innov.6 (2011) 217–231; https://doi.org/10.1007/s12247-011-9115-510.1007/s12247-011-9115-5
- 33. F. G. Vogt and A. S. Kord, Development of quality-by-design analytical methods, J. Pharm. Sci.100 (2011) 797–812; https://doi.org/10.1002/jps.2232510.1002/jps.2232521280050
- 34. R. Peraman, K. Bhadraya and Y. P. Reddy, Analytical quality by design: A tool for regulatory flexibility and robust analytics, Int. J. Anal. Chem.2015 (2015) Article ID 868727 (9 pages); https://doi.org/10.1155/2015/86872710.1155/2015/868727433298625722723
- 35. P. Jackson, P. Borman, C. Campa, M. Chatfield, M. Godfrey, P. Hamilton, W. Hoyer, F. Norelli, R. Orr and T. Schofield, Using the analytical target profile to drive the analytical method lifecycle, Anal. Chem.91 (2019) 2577–2585; https://doi.org/10.1021/acs.analchem.8b0459610.1021/acs.analchem.8b0459630624912
- 36. M. A. Gad, S. M. Amer, H. E. Zaazaa and S. A. Hassan, Strategies for stabilizing formulation and QbD assisted development of robust stability indicating method of azilsartan medoxomil/chlorthalidone, J. Pharm. Biomed. Anal.178 (2020) Article ID 112910; https://doi.org/10.1016/j.jpba.2019.11291010.1016/j.jpba.2019.11291031618701
- 37. B. Kovács, L. K. Kántor, M. D. Croitoru, É. K. Kelemen, M. Obreja, E. E. Nagy, B. Székely-Szentmiklósi and Á. Gyéresi, Reversed phase HPLC for strontium ranelate: Method development and validation applying experimental design, Acta Pharm. 68 (2018) 171–183; https://doi.org/10.2478/acph-2018-001910.2478/acph-2018-001929702478
- 38. A. Dispas, H. T. Avohou, P. Lebrun, P. Hubert and C. Hubert, ‘Quality by Design’ approach for the analysis of impurities in pharmaceutical drug products and drug substances, TrAC - Trends Anal. Chem.101 (2018) 24–33; https://doi.org/10.1016/j.trac.2017.10.02810.1016/j.trac.2017.10.028
- 39. P. Ramalingam and B. Jahnavi, QbD Considerations for Analytical Development, in Pharmaceutical Quality by Design – Principles and Applications (Ed. S. Beg and S. Hasnain), Elsevier, Amsterdam 2019, pp. 77–108.10.1016/B978-0-12-815799-2.00005-8
- 40. R. M. Ahmed, A. Ibrahim, A. E. El-Gendy and G. M. Hadad, Implementing a Quality by Design approach in chromatographic determination of some antidiabetic drugs, SF J. Pharm. Anal. Chem. 1 (2018) Article ID 1001 (9 pages).
- 41. T. Tome, N. Žigart, Z. Časar and A. Obreza, Development and optimization of liquid chromatography analytical methods by using AQbD principles: Overview and recent advances, Org. Process Res. Dev.23 (2019) 1784–1802; https://doi.org/10.1021/acs.oprd.9b0023810.1021/acs.oprd.9b00238
- 42. C. Saha, N. V. Gupta and R. S. Chandan, Development and validation of a UPLC-MS method for determination of atazanavir sulfate by the “analytical quality by design” approach, Acta Pharm.70 (2020) 17–33; https://doi.org/10.2478/acph-2020-000810.2478/acph-2020-000831677371
- 43. R. Deidda, H. T. Avohou, R. Baronti, P. L. Davolio, B. Pasquini, M. Del Bubba, C. Hubert, P. Hubert, S. Orlandini and S. Furlanetto, Analytical quality by design: Development and control strategy for a LC method to evaluate the cannabinoids content in cannabis olive oil extracts, J. Pharm. Biomed. Anal.166 (2019) 326–335; https://doi.org/10.1016/j.jpba.2019.01.03210.1016/j.jpba.2019.01.03230685656
- 44. J. Shao, W. Cao, H. Qu, J. Pan and X. Gong, A novel quality by design approach for developing an HPLC method to analyze herbal extracts: A case study of sugar content analysis, PLoS One13 (2018); e0198515; https://doi.org/10.1371/journal.pone.019851510.1371/journal.pone.0198515599323729883452
- 45. A. S. K. Sankar, P. Shanmugasundaram and R. Velayudham, Quality by design-applied liquid chromatography-tandem mass spectrometry determination of enzalutamide anti-prostate cancer therapy drug in spiked plasma samples, Anal. Chem. Insights12 (2017) 1–11; https://doi.org/10.1177/117739011772677610.1177/1177390117726776557654028874884
- 46. M. Deepa, K. R. Reddy and S. V. Satyanarayana, A review on quality by design approach for analytical method development, J. Pharm. Res.11 (2017) 272–277.
- 47. V. Das, B. Bhairav and R. B. Saudagar, Quality by design approaches to analytical method development, Res. J. Pharm. Technol.10 (2017) 3188–3194; https://doi.org/10.5958/0974-360X.2017.00567.410.5958/0974-360X.2017.00567.4
- 48. J. R. Wagner, Jr., E. M. Mount III and H. F. Giles, Jr., Extrusion: The Definitive Processing Guide and Handbook, 2nd Edition, Elsevier, Amsterdam 2013.
- 49. I. M. Fukuda, C. F. F. Pinto, C. dos Santos Moreira, A. M. Saviano and F. R. Lourenço, Design of experiments (DoE) applied to pharmaceutical and analytical quality by design (QbD), Braz. J. Pharm. Sci.54 (2018) e01006 (16 pages); https://doi.org/10.1590/s2175-9790201800000100610.1590/s2175-97902018000001006
- 50. C. Croarkin and P. Tobias, NIST/SEMATECH e-handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook; last access date January 31, 2020
- 51. P. K. Sahu, N. R. Ramisetti, T. Cecchi, S. Swain, C. S. Patro and J. Panda, An overview of experimental designs in HPLC method development and validation, J. Pharm. Biomed. Anal.147 (2018) 590–611; https://doi.org/10.1016/j.jpba.2017.05.00610.1016/j.jpba.2017.05.00628579052
- 52. B. Sylvester, L. Tefas, L. Vlase, I. Tomuţă and A. Porfire, A Quality by Design (QbD) approach to the development of a gradient high-performance liquid chromatography for the simultaneous assay of curcuminoids and doxorubicin from long-circulating liposomes, J. Pharm. Biomed. Anal.158 (2018) 395–404; https://doi.org/10.1016/j.jpba.2018.06.01810.1016/j.jpba.2018.06.01829966945
- 53. A. Tumpa, S. Mišković, Z. Stanimirović, B. Jančić-Stojanović and M. Medenica, Modeling of HILIC retention behavior with theoretical models and new spline interpolation technique, J. Chemom.31 (2017) e2910; https://doi.org/10.1002/cem.291010.1002/cem.2910
- 54. E. Ferencz, B. Kovács, F. Boda, M. Foroughbakhshfasaei, É. K. Kelemen, G. Tóth and Z. I. Szabó, Simultaneous determination of chiral and achiral impurities of ivabradine on a cellulose tris(3-chloro-4-methylphenylcarbamate) chiral column using polar organic mode, J. Pharm. Biomed. Anal.177 (2020) Article ID 112851; https://doi.org/10.1016/j.jpba.2019.11285110.1016/j.jpba.2019.11285131499427
- 55. B. Kovács, F. Boda, I. Fülöp, I. Székely-Szentmiklósi, É. K. Kelemen, B. Kovács-Deák and B. Székely-Szentmiklósi, HPLC method development for fampridine using Analytical Quality by Design approach, Acta Pharm.70 (2020) 465–482; https://doi.org/10.2478/acph-2020-003610.2478/acph-2020-003632412430
- 56. L. Kumar, M. S. Reddy, R. S. Managuli and G. Pai K., Full factorial design for optimization, development and validation of HPLC method to determine valsartan in nanoparticles, Saudi Pharm. J.23 (2015) 549–555; https://doi.org/10.1016/j.jsps.2015.02.00110.1016/j.jsps.2015.02.001460590326594122
- 57. M. Mašković, B. Jančić-Stojanović, A. Malenović, D. Ivanović and M. Medenica, Assessment of liquid chromatographic method robustness by use of Plackett-Burman design, Acta Chromatogr.22 (2010) 281–296; https://doi.org/10.1556/AChrom.22.2010.2.1010.1556/AChrom.22.2010.2.10
- 58. A. Gundala, K. Prasad and B. Koganti, Application of quality by design approach in RP-HPLC method development for simultaneous estimation of saxagliptin and dapagliflozin in tablet dosage form, Braz. J. Pharm. Sci.55 (2019) e18129; https://doi.org/10.1590/s2175-9790201900021812910.1590/s2175-97902019000218129
- 59. K. Gupta, Analytical Quality by Design: A mini review, Biomed. J. Sci. Tech. Res.1 (2017) 1555–1559; https://doi.org/10.26717/bjstr.2017.01.00048410.26717/BJSTR.2017.01.000484
- 60. K. E. Monks, H. J. Rieger and I. Molnár, Expanding the term “Design Space” in high performance liquid chromatography (I), J. Pharm. Biomed. Anal.56 (2011) 874–879; https://doi.org/10.1016/j.jpba.2011.04.01510.1016/j.jpba.2011.04.01521893394
- 61. P. Bhatt, M. Saquib Hasnain, A. K. Nayak, B. Hassan and S. Beg, Development and validation of QbD-driven bioanalytical LC-MS/MS method for the quantification of paracetamol and diclofenac in human plasma, Anal. Chem. Lett.8 (2018) 677–691; https://doi.org/10.1080/22297928.2018.142930510.1080/22297928.2018.1429305
- 62. N. V. V. S. S. Raman, U. R. Mallu and H. R. Bapatu, Analytical Quality by Design approach to test method development and validation in drug substance manufacturing, J. Chem.2015 (2015) Article ID 435129 (8 pages); https://doi.org/10.1155/2015/43512910.1155/2015/435129
- 63. G. L. Reid, J. Morgado, K. Barnett, B. Harrington, J. Wang, J. Harwood and D. Fortin, Analytical Quality by Design (AQbD) in pharmaceutical development, Am. Pharm. Rev., August 27, 2013; https://www.americanpharmaceuticalreview.com/Featured-Articles/144191-Analytical-Quality-by-Design-AQbD-in-Pharmaceutical-Development/
- 64. X. Yu, L. X. Yu, Y. Teng, D. K. Gaglani, B. D. Rege and S. Rosencrance, Implementation of Pharmaceutical Quality by Design in Wet Granulation, in Handbook of Pharmaceutical Wet Granulation – Theory and Practice in a Quality by Design Paradigm (Eds. A. S. Narang and S. I. F. Badawy), Elsevier, Amsterdam 2019, pp. 703–733.10.1016/B978-0-12-810460-6.00024-5
- 65. L. Eriksson, E. Johansson, N. Kettaneh-Wold, C. Wikström and S. Wold, Design of Experiments, Principles and Applications, 3rd Edition, Umetrics, Umeå 2000.
- 66. Z. I. Szabó, B. Székely-Szentmiklósi, B. Deák, I. Székely-Szentmiklósi, B. Kovács, K. Zöldi and E. Sipos, Study of the effect of formulation variables on the characteristics of combination tablets containing enalapril maleate and indapamide as active substances using experimental design, Acta Pharm.66 (2016) 191–206; https://doi.org/10.1515/acph-2016-001910.1515/acph-2016-0019
- 67. B. Rambali, L. Baert and D. L. Massart, Using experimental design to optimize the process parameters in fluidized bed granulation on a semi-full scale, Int. J. Pharm.220 (2001) 149–160; https://doi.org/10.1016/S0378-5173(01)00658-510.1016/S0378-5173(01)00658-5
- 68. J. Djuris, D. Medarevic, M. Krstic, Z. Djuric and S. Ibric, Application of quality by design concepts in the development of fluidized bed granulation and tableting processes, J. Pharm. Sci.102 (2013) 1869–1882; https://doi.org/10.1002/jps.2353010.1002/jps.2353023568772
- 69. I. Aleksić, J. Đuriš, I. Ilić, S. Ibrić, J. Parojčić and S. Srčič, In silico modeling of in situ fluidized bed melt granulation, Int. J. Pharm.466 (2014) 21–30; https://doi.org/10.1016/j.ijpharm.2014.02.04510.1016/j.ijpharm.2014.02.04524607215
- 70. A. S. Zidan, M. Ebeed, H. Elghamry and A. Badawy, Nicotinamide pelletization by fluidized hot melt granulation: L18 Hunter design to screen high risk variables, Int. J. Pharm.466 (2014) 83–95; https://doi.org/10.1016/j.ijpharm.2014.03.00810.1016/j.ijpharm.2014.03.00824614582
- 71. H. F. Santos Souza, D. Real, D. Leonardi, S. C. Rocha, V. Alonso, E. Serra, A. M. Silber and C. J. Salomon, Development and in vitro/in vivo evaluation of a novel benznidazole liquid dosage form using a quality-by-design approach, Trop. Med. Int. Heal.22 (2017) 1514–1522; https://doi.org/10.1111/tmi.1298010.1111/tmi.1298028944986
- 72. M. Cirri, F. Maestrelli, P. Mura, C. Ghelardini and L. Di Cesare Mannelli, Combined approach of cyclodextrin complexationand nanostructured lipid carriers for the development of a pediatric liquid oral dosage form of hydrochlorothiazide, Pharmaceutics10 (2018) Article ID 287 (17 pages); https://doi.org/10.3390/pharmaceutics1004028710.3390/pharmaceutics10040287632140830572649
- 73. J. Joseph, B. N. V. Hari and D. R. Devi, Experimental optimization of lornoxicam liposomes for sustained topical delivery, Eur. J. Pharm. Sci.112 (2018) 38–51; https://doi.org/10.1016/j.ejps.2017.10.03210.1016/j.ejps.2017.10.03229111151
- 74. B. Sylvester, A. Porfire, D. M. Muntean, L. Vlase, L. Lupuţ, E. Licarete, A. Sesarman, M. C. Alupei, M. Banciu, M. Achim and I. Tomuţă, Optimization of prednisolone-loaded long-circulating liposomes via application of Quality by Design (QbD) approach, J. Liposome Res.28 (2018) 49–61; https://doi.org/10.1080/08982104.2016.125424210.1080/08982104.2016.125424227788618
- 75. S. Alam, M. Aslam, A. Khan, S. S. Imam, M. Aqil, Y. Sultana and A. Ali, Nanostructured lipid carriers of pioglitazone for transdermal application: From experimental design to bioactivity detail, Drug Deliv.23 (2016) 601–609; https://doi.org/10.3109/10717544.2014.92395810.3109/10717544.2014.92395824937378
- 76. V. Sutariya, A. Groshev, P. Sadana, D. Bhatia and Y. Pathak, Artificial neural network in drug delivery and pharmaceutical research, Open Bioinform. J.7 (2014) 49–62; https://doi.org/10.2174/187503620130701004910.2174/1875036201307010049
- 77. M. Puri, A. Solanki, T. Padawer, S. M. Tipparaju, W. A. Moreno and Y. Pathak, Introduction to Artificial Neural Network (Ann) as a Predictive Tool for Drug Design, Discovery, Delivery, and Disposition: Basic Concepts and Modeling, in Artificial Neural Network for Drug Design, Delivery and Disposition (Eds. M. Puri, Y. Pathak, V. K. Sutariya, S. Tipparaju and W. Moreno), Elsevier Amsterdam 2016, pp. 3–13.10.1016/B978-0-12-801559-9.00001-6
- 78. F. Amato, A. López, E. M. Peña-Méndez, P. Vaňhara, A. Hampl and J. Havel, Artificial neural networks in medical diagnosis, J. Appl. Biomed.11 (2013) 47–58; https://doi.org/10.2478/v10136-012-0031-x10.2478/v10136-012-0031-x
- 79. V. Mandlik, P. R. Bejugam and S. Singh, Application of artificial neural networks in modern drug discovery, in: Artificial. Neural Network for Drug Design, Delivery and Disposition (Eds. M. Puri, Y. Pathak, V. K. Sutariya, S. Tipparaju and W. Moreno), Elsevier, Amsterdam 2016, pp. 123–139.10.1016/B978-0-12-801559-9.00006-5
- 80. P. S. Rajpal, K. S. Shishodia and G. S. Sekhon, An artificial neural network for modeling reliability, availability and maintainability of a repairable system, Reliab. Eng. System. Saf.91 (2006) 809–819; https://doi.org/10.1016/j.ress.2005.08.00410.1016/j.ress.2005.08.004
- 81. M. Bianchini and F. Scarselli, On the complexity of neural network classifiers: A comparison between shallow and deep architectures, IEEE Trans. Neural Networks Learn. Syst.25 (2014) 1553–1565; https://doi.org/10.1109/TNNLS.2013.229363710.1109/TNNLS.2013.229363725050951
- 82. D. A. Winkler and T. C. Le, Performance of deep and shallow neural networks, the universal approximation theorem, activity cliffs, and QSAR, Mol. Inform.36 (2017) Article ID 1600118; https://doi.org/10.1002/minf.20160011810.1002/minf.20160011827783464
- 83. M. Z. Alom, T. M. Taha, C. Yakopcic, S. Westberg, P. Sidike, M. S. Nasrin, M. Hasan, B. C. Van Essen, A. A. S. Awwal and V. K. Asari, A state-of-the-art survey on deep learning theory and architectures, Electronics8 (2019) Article ID 292; https://doi.org/10.3390/electronics803029210.3390/electronics8030292
- 84. N. K. Chauhan and K. Singh, A review on conventional machine learning vs deep learning, in: 2018 International Conference on Computing, Power and Communication Technologies (GUCON), Greater Noida (UP, India), Sept. 28-29, 2018; IEEE, pp. 347–352; https://doi.org/10.1109/GUCON.2018.867509710.1109/GUCON.2018.8675097
- 85. T. I. Poznyak, I. Chairez Oria and A. S. Poznyak, Background on Dynamic Neural Networks, in Ozonation and Biodegradation in Environmental Engineering, Dynamic Neural Network Approach (Eds. T. I. Poznyak, I. Chairez and A. S. Poznyak), Elsevier, Amsterdam 2019, pp. 57–74.10.1016/B978-0-12-812847-3.00012-3
- 86. N. Lanzetti, Y. Z. Lian, A. Cortinovis, L. Dominguez, M. Mercangöz and C. Jones, Recurrent neural network based MPC for process industries, 2019 18th European Control Conference (ECC), Naples (Italy), June 25–28, 2019, IEEE, pp. 1005-1010, https://doi.org/10.23919/ECC.2019.879580910.23919/ECC.2019.8795809
- 87. B. Zhang, X. Sun, S. Liu and X. Deng, Recurrent neural network-based model predictive control for multiple unmanned quadrotor formation flight, Int. J. Aerosp. Eng.2019 (2019) (18 pages); https://doi.org/10.1155/2019/727238710.1155/2019/7272387
- 88. M. Ankith, S. S. Teja and N. Demodharan, Artifical Neural networks: functioning and applications in pharmaceutical industry, Int. J. Appl. Pharm.10 (2018) 28–33; https://doi.org/10.22159/ijap.2018v10i5.2830010.22159/ijap.2018v10i5.28300
- 89. M. Pishnamazi, H. Y. Ismail, S. Shirazian, J. Iqbal, G. M. Walker and M. N. Collins, Application of lignin in controlled release: development of predictive model based on artificial neural network for API release, Cellulose26 (2019) 6165–6178; https://doi.org/10.1007/s10570-019-02522-w10.1007/s10570-019-02522-w
- 90. C. Prithviraj, P. Versha, C. D. Debarupa and G. Amitava, Application of artificial neural network model in predicting physicochemical characteristics of pharmaceutically developed wafers of loratadine, Asian J. Pharm.9 (2015) 44–48; https://doi.org/10.4103/0973-8398.15003610.4103/0973-8398.150036
- 91. B. Aksu, G. Yegen, S. Purisa, E. Cevher and Y. Ozsoy, Optimisation of ondansetron orally disinte-grating tablets using artificial neural networks, Trop. J. Pharm. Res.13 (2014) 1374–1383; https://doi.org/10.4314/tjpr.v13i9.110.4314/tjpr.v13i9.1
- 92. R. Han, Y. Yang, X. Li and D. Ouyang, Predicting oral disintegrating tablet formulations by neural network techniques, Asian J. Pharm. Sci.13 (2018) 336–342; https://doi.org/10.1016/j.ajps.2018.01.00310.1016/j.ajps.2018.01.003703215332104407
- 93. M. Ilić, J. Đuriš, I. Kovačević, S. Ibrić and J. Parojčić, In vitro - in silico - in vivo drug absorption model development based on mechanistic gastrointestinal simulation and artificial neural networks: Nifedipine osmotic release tablets case study, Eur. J. Pharm. Sci.62 (2014) 212–218; https://doi.org/10.1016/j.ejps.2014.05.03010.1016/j.ejps.2014.05.03024911992
- 94. D. L. Galata, A. Farkas, Z. Könyves, L. A. Mészáros, E. Szabó, I. Csontos, A. Pálos, G. Marosi, Z. K. Nagy and B. Nagy, Fast, spectroscopy-based prediction of in vitro dissolution profile of extended release tablets using artificial neural networks, Pharmaceutics11 (2019) Article ID 400 (18 pages); https://doi.org/10.3390/pharmaceutics1108040010.3390/pharmaceutics11080400672389731405029
- 95. B. Nagy, D. Petra, D. L. Galata, B. Démuth, E. Borbás, G. Marosi, Z. K. Nagy and A. Farkas, Application of artificial neural networks for process analytical technology-based dissolution testing, Int. J. Pharm.567 (2019) Article ID 118464; https://doi.org/10.1016/j.ijpharm.2019.11846410.1016/j.ijpharm.2019.11846431252145
- 96. M. Zandkarimi, M. Shafiei, F. Hadizadeh, M. Ali Darbandi and K. Tabrizian, Prediction of pharmacokinetic parameters using a genetic algorithm combined with an artificial neural network for a series of alkaloid drugs, Sci. Pharm.82 (2014) 53–70; https://doi.org/10.3797/scipharm.1306-1010.3797/scipharm.1306-10395123324634842
- 97. W. C. Wong, E. Chee, J. Li and X. Wang, Recurrent neural network-based model predictive control for continuous pharmaceutical manufacturing, Mathematics6 (2018) Article ID 242; https://doi.org/10.3390/math611024210.3390/math6110242
- 98. P. Oliveri and M. Forina, Data Analysis and Chemometrics, in Chemical Analysis of Food: Techniques and Applications (Ed. Y. Pico), Elsevier, Amsterdam 2012, pp. 25–57.10.1016/B978-0-12-384862-8.00002-9
- 99. S. Grimnes and O. G. Martinsen, Data and Models, in Bioimpedance and Bioelectricity Basics (Eds. S. Grimnes and O. G. Martinsen), 3rd ed, Elsevier, Amsterdam 2015, pp. 329–404.10.1016/B978-0-12-411470-8.00009-X
- 100. J. S. Markowitz, Multivariate Analysis, in Mortality and Its Risk Factors Among Profession Athletes (Ed. J. S. Markowitz), Springer Nature, Cham (Switzerland) 2018, pp. 71–81.10.1007/978-3-319-77203-5_8
- 101. A. P. Ferreira and M. Tobyn, Multivariate analysis in the pharmaceutical industry: enabling process understanding and improvement in the PAT and QbD era, Pharm. Dev. Technol.20 (2015) 513–527; https://doi.org/10.3109/10837450.2014.89865610.3109/10837450.2014.89865624641280
- 102. I. Singh, P. Juneja, B. Kaur and P. Kumar, Pharmaceutical applications of chemometric techniques, ISRN Anal. Chem.2013 (2013) Article ID 795178 (13 pages); https://doi.org/10.1155/2013/79517810.1155/2013/795178
- 103. I. T. Jolliffe and J. Cadima, Principal component analysis: A review and recent developments, Philos. Trans. R. Soc. A374 (2016) Article ID 20150202 (16 pages); https://doi.org/10.1098/rsta.2015.020210.1098/rsta.2015.0202479240926953178
- 104. S. Maitra and J. Yan, Principle Component Analysis and Partial Least Squares: Two dimension Reduction Techniques for Regression, in Applying Multivariate Statistical Models, 2008 Discussion Paper Program, June 15–18, 2008, Casualty Actuarial Society, Québec City, pp.79–90.
- 105. R. Roopwani, Z. Shi and I. S. Buckner, Application of principal component analysis (PCA) to evaluating the deformation behaviors of pharmaceutical powders, J. Pharm. Innov.8 (2013) 121–130; https://doi.org/10.1007/s12247-013-9153-210.1007/s12247-013-9153-2
- 106. S. Bhattacharya, S. Mishra and B. G. Prajapati, Design and development of docetaxel solid self-microemulsifying drug delivery system using principal component analysis and D-optimal design, Asian J. Pharm.12 (2018) S122–S144.
- 107. N. L. Calvo, T. S. Kaufman and R. M. Maggio, Mebendazole crystal forms in tablet formulations. An ATR-FTIR/chemometrics approach to polymorph assignment, J. Pharm. Biomed. Anal.122 (2016) 157–165; https://doi.org/10.1016/j.jpba.2016.01.03510.1016/j.jpba.2016.01.03526874854
- 108. S. Glavanović, M. Glavanović and V. Tomišić, Simultaneous quantitative determination of paracetamol and tramadol in tablet formulation using UV spectrophotometry and chemometric methods, Spectrochim. Acta A157 (2016) 258–264; https://doi.org/10.1016/j.saa.2015.12.02010.1016/j.saa.2015.12.02026774813
- 109. A. Mostafa, A. El Gindy and S. Emara, Simultaneous spectrophotometric estimation of bisoprolol fumarate and hydrochlorothiazide in tablet formulation using partial least-squares, principal component regression multivariate calibrations and RP-HPLC methods, J. Anal. Pharm. Res.4 (2017) Article ID 00124 (9 pages); https://doi.org/10.15406/japlr.2017.04.0012410.15406/japlr.2017.04.00124
- 110. B. M. Marson, R. de Oliveira Vilhena, C. R. de Souza Madeira, F. L. D. Pontes, M. S. Piantavini and R. Pontarolo, Simultaneous quantification of artesunate and mefloquine in fixed-dose combination tablets by multivariate calibration with middle infrared spectroscopy and partial least squares regression, Malaria J.15 (2016) Article ID 109; https://doi.org/10.1186/s12936-016-1157-110.1186/s12936-016-1157-1476507226911371
- 111. J. Silva, M. Mendes, T. Cova, J. Sousa, A. Pais and C. Vitorino, Unstructured formulation data analysis for the optimization of lipid nanoparticle drug delivery vehicles, AAPS PharmSciTech19 (2018) 2383–2394; https://doi.org/10.1208/s12249-018-1078-010.1208/s12249-018-1078-029869314
- 112. S. F. B. Ali, Z. Rahman, S. Dharani, H. Afrooz and M. A. Khan, Chemometric models for quantification of carbamazepine anhydrous and dihydrate forms in the formulation, J. Pharm. Sci.108 (2019) 1211–1219; https://doi.org/10.1016/j.xphs.2018.10.02310.1016/j.xphs.2018.10.02330773201
- 113. V. Arabzadeh, M. R. Sohrabi, N. Goudarzi and M. Davallo, Using artificial neural network and multivariate calibration methods for simultaneous spectrophotometric analysis of emtricitabine and tenofovir alafenamide fumarate in pharmaceutical formulation of HIV drug, Spectrochim. Acta A215 (2019) 266–275; https://doi.org/10.1016/j.saa.2019.02.07710.1016/j.saa.2019.02.07730831397
- 114. G. Ioele, M. de Luca, E. Dinç, F. Oliverio and G. Ragno, Artificial neural network combined with principal component analysis for resolution of complex pharmaceutical formulations, Chem. Pharm. Bull.59 (2011) 35–40; https://doi.org/10.1248/cpb.59.3510.1248/cpb.59.3521212544
- 115. R. W. Bondi and J. K. Drennen, Quality by Design and the Importance of PAT in QbD, in Separation Science and Technology (Eds. S. Ahuja and S. Scypinski), Elsevier, Amsterdam 2020, Vol. 10, pp. 195–224.10.1016/B978-0-12-375680-0.00005-X
- 116. S. Laske, A. Paudel, O. Scheibelhofer, S. Sacher, T. Hoermann, J. Khinast, A. Kelly, J. Rantannen, O. Korhonen, F. Stauffer, F. De Leersnyder, T. De Beer, J. Mantanus, P. F. Chavez, B. Thoorens, P. Ghiotti, M. Schubert, P. Tajarobi, G. Haeffler, S. Lakio, M. Fransson, A. Sparen, S. Abrahmsen-Alami, S. Folestad, A. Funke, I. Backx, B. Kavsek, F. Kjell, M. Michaelis, T. Page, J. Palmer, A. Schaepman, S. Sekulic, S. Hammond, B. Braun and B. Colegrove, A review of PAT strategies in secondary solid oral dosage manufacturing of small molecules, J. Pharm. Sci.106 (2017) 667–672; https://doi.org/10.1016/j.xphs.2016.11.01110.1016/j.xphs.2016.11.01128017464
- 117. T. De Beer, A. Burggraeve, M. Fonteyne, L. Saerens, J. P. Remon and C. Vervaet, Near infrared and Raman spectroscopy for the in-process monitoring of pharmaceutical production processes, Int. J. Pharm.417 (2011) 32–47; https://doi.org/10.1016/j.ijpharm.2010.12.01210.1016/j.ijpharm.2010.12.01221167266
- 118. T. Helešicová, T. Pekárek and P. Matějka, The influence of different acquisition settings and the focus adjustment on Raman spectral maps of pharmaceutical tablets, J. Drug Delivery Sci. Tehnol.47 (2018) 386–394; https://doi.org/10.1016/j.jddst.2018.08.00210.1016/j.jddst.2018.08.002
- 119. H. Mitsutake, S. R. Castro, E. de Paula, R. J. Poppi, D. N. Rutledge and M. C. Breitkreitz, Comparison of different chemometric methods to extract chemical and physical information from Raman images of homogeneous and heterogeneous semi-solid pharmaceutical formulations, Int. J. Pharm.552 (2018) 119–129; https://doi.org/10.1016/j.ijpharm.2018.09.05810.1016/j.ijpharm.2018.09.05830266516
- 120. K. Nomura, V. Titapiwatanakun, H. Hisada, T. Koide and T. Fukami, In situ monitoring of the crystalline state of active pharmaceutical ingredients during high-shear wet granulation using a low-frequency Raman probe, Eur. J. Pharm. Biopharm.147 (2020) 1–9; https://doi.org/10.1016/j.ejpb.2019.12.00410.1016/j.ejpb.2019.12.00431841690
- 121. A. Gavan, S. Iurian, T. Casian, A. Porfire, S. Porav, I. Voina, A. Oprea and I. Tomuta, Fluidised bed granulation of two APIs: QbD approach and development of a NIR in-line monitoring method, Asian J. Pharm. Sci.15 (2020) 506–517; https://doi.org/10.1016/j.ajps.2019.03.00310.1016/j.ajps.2019.03.003748651132952673
- 122. T. Casian, A. Reznek, A. L. Vonica-Gligor, J. Van Renterghem, T. De Beer and I. Tomuță, Development, validation and comparison of near infrared and Raman spectroscopic methods for fast characterization of tablets with amlodipine and valsartan, Talanta167 (2017) 333–343; https://doi.org/10.1016/j.talanta.2017.01.09210.1016/j.talanta.2017.01.09228340729
- 123. H. Wu and M. Khan, THz spectroscopy: An emerging technology for pharmaceutical development and pharmaceutical Process analytical technology (PAT) applications, J. Mol. Struct.1020 (2012) 112–120; https://doi.org/10.1016/j.molstruc.2012.04.01910.1016/j.molstruc.2012.04.019
- 124. P. F. Taday, D. Van Der Weide, K. Wood, M. Chamberlain, H. Roskos, C. Phillips, D. Newnham, M. Towrie and I. Appelquist, Applications of terahertz spectroscopy to pharmaceutical sciences, Philos. Trans. R. Soc. A362 (2004) 351–364; https://doi.org/10.1098/rsta.2003.132110.1098/rsta.2003.132115306525
- 125. Y. B. Monakhova, U. Holzgrabe and B. W. K. Diehl, Current role and future perspectives of multivariate (chemometric) methods in NMR spectroscopic analysis of pharmaceutical products, J. Pharm. Biomed. Anal.147 (2018) 580–589; https://doi.org/10.1016/j.jpba.2017.05.03410.1016/j.jpba.2017.05.03428583765
- 126. K. Korasa and F. Vrečer, Overview of PAT process analysers applicable in monitoring of film coating unit operations for manufacturing of solid oral dosage forms, Eur. J. Pharm. Sci.111 (2018) 278–292; https://doi.org/10.1016/j.ejps.2017.10.01010.1016/j.ejps.2017.10.01029020609
- 127. E. M. Hansuld and L. Briens, A review of monitoring methods for pharmaceutical wet granulation, Int. J. Pharm.472 (2014) 192–201; https://doi.org/10.1016/j.ijpharm.2014.06.02710.1016/j.ijpharm.2014.06.02724950366
- 128. X. Hu, J. C. Cunningham and D. Winstead, Study growth kinetics in fluidized bed granulation with at-line FBRM, Int. J. Pharm.347 (2008) 54–61; https://doi.org/10.1016/j.ijpharm.2007.06.04310.1016/j.ijpharm.2007.06.04317689213
- 129. F. Alshihabi, T. Vandamme and G. Betz, Focused beam reflectance method as an innovative (PAT) tool to monitor in-line granulation process in fluidized bed, Pharm. Dev. Technol.18 (2013) 73–84; https://doi.org/10.3109/10837450.2011.62786810.3109/10837450.2011.62786822035287
- 130. A. S. Narang, T. Stevens, K. Macias, S. Paruchuri, Z. Gao and S. Badawy, Application of in-line focused beam reflectance measurement to brivanib alaninate wet granulation process to enable scale-up and attribute-based monitoring and control strategies, J. Pharm. Sci.106 (2017) 224–233; https://doi.org/10.1016/j.xphs.2016.08.02510.1016/j.xphs.2016.08.02527771049
- 131. U. Verma, J. B. Naik, J. S. Patil and S. K. Yadava, Screening of process variables to enhance the solubility of famotidine with 2-hydroxypropyl-β-cyclodextrin & PVP K-30 by using Plackett-Burman design approach, Mater. Sci. Eng. C77 (2017) 282–292; https://doi.org/10.1016/j.msec.2017.03.23810.1016/j.msec.2017.03.23828532031
- 132. A. Anand, G. Singh and S. A. Saraf, Plackett–Burman design as a tool for screening and process optimization of rivastigmine-loaded lipid nanocarriers, Asian J. Pharm. Clin. Res.11 (2018) 155–158; https://doi.org/10.22159/ajpcr.2018.v11i12.2806610.22159/ajpcr.2018.v11i12.28066
- 133. K. M. Hosny, O. A. A. Ahmed, U. A. Fahmy and H. M. Alkhalidi, Nanovesicular systems loaded with a recently approved second generation type-5 phospodiesterase inhibitor (avanafil): I. Plackett-Burman screening and characterization, J. Drug Deliv. Sci. Technol.43 (2018) 154–159; https://doi.org/10.1016/j.jddst.2017.10.00910.1016/j.jddst.2017.10.009
- 134. T. Alam, S. Khan, B. Gaba, M. F. Haider, S. Baboota and J. Ali, Adaptation of Quality by Design-based development of isradipine nanostructured-lipid carrier and its evaluation for in vitro gut permeation and in vivo solubilization fate, J. Pharm. Sci.107 (2018) 2914–2926; https://doi.org/10.1016/j.xphs.2018.07.02110.1016/j.xphs.2018.07.02130076853
- 135. S. S. Chudiwal and M. H. G. Dehghan, Quality by design (QbD) approach for design and development of drug-device combination products: a case study on flunisolide nasal spray, Pharm. Dev. Technol.23 (2018) 1077–1087; https://doi.org/10.1080/10837450.2016.123613010.1080/10837450.2016.123613027616074
- 136. N. Jaipakdee, E. Limpongsa and T. Pongjanyakul, Optimization of minoxidil microemulsions using fractional factorial design approach, Pharm. Dev. Technol.21 (2016) 86–97; https://doi.org/10.3109/10837450.2014.97137510.3109/10837450.2014.97137525318551
- 137. T. Adebileje, S. Adebileje and P. O. Aye, Ciprofloxacin hydrochloride encapsulated into PLGA nanoparticles for drug delivery application: Fractional factorial design, Open Access Library J.5 (2018) e4294; https://doi.org/10.4236/oalib.110429410.4236/oalib.1104294
- 138. A. Jain, T. Sharma, G. Sharma, R. K. Khurana, O. P. Katare and B. Singh, QbD-driven analytical method development and validation for raloxifene hydrochloride in pure drug and solid oral dosage form, Anal. Chem. Lett.9 (2019) 463–477; https://doi.org/10.1080/22297928.2019.162419310.1080/22297928.2019.1624193
- 139. M. J. Ramalho, J. A. Loureiro, M. A. N. Coelho and M. C. Pereira, Factorial design as a tool for the optimization of PLGA nanoparticles for the co-delivery of temozolomide and O6-benzylguanine, Pharmaceutics11 (2019) Article ID 401; https://doi.org/10.3390/pharmaceutics1108040110.3390/pharmaceutics11080401672298031405159
- 140. A. Kumar, A. Nayak and S. Ghatuary, Design, optimization and characterization of a transferosomal gel of acyclovir for effective treatment of Herpes zoster, J. Drug Deliv. Ther.9 (2019) 712–721; https://doi.org/10.22270/jddt.v9i4-A.3556
- 141. C. Roy and J. Chakrabarty, Quality by design-based development of a stability-indicating RPHPLC method for the simultaneous determination of methylparaben, propylparaben, diethyl-amino hydroxybenzoyl hexyl benzoate, and octinoxate in topical pharmaceutical formulation, Sci. Pharm.82 (2014) 519–539; https://doi.org/10.3797/scipharm.1312-2010.3797/scipharm.1312-20431816625853065
- 142. A. R. Fernandes, N. R. Ferreira, J. F. Fangueiro, A. C. Santos, F. J. Veiga, C. Cabral, A. M. Silva and E. B. Souto, Ibuprofen nanocrystals developed by 22 factorial design experiment: A new approach for poorly water-soluble drugs, Saudi Pharm. J.25 (2017) 1117–1124; https://doi.org/10.1016/j.jsps.2017.07.00410.1016/j.jsps.2017.07.004611111230166898
- 143. H. Patel, H. Patel, M. Gohel and S. Tiwari, Dissolution rate improvement of telmisartan through modified MCC pellets using 32 full factorial design, Saudi Pharm. J.24 (2016) 579–587; https://doi.org/10.1016/j.jsps.2015.03.00710.1016/j.jsps.2015.03.007505983527752231
- 144. U. Verma, R. Rajput and J. B. Naik, Development and characterization of fast dissolving film of chitosan embedded famotidine using 32 full factorial design approach, Mater. Today Proc. 5 (2018) 408–414; https://doi.org/10.1016/j.matpr.2017.11.09910.1016/j.matpr.2017.11.099
- 145. S. M. Soliman, N. S. Abdelmalak, O. N. El-Gazayerly and N. Abdelaziz, Novel non-ionic surfactant proniosomes for transdermal delivery of lacidipine: optimization using 23 factorial design and in vivo evaluation in rabbits, Drug Deliv.23 (2016) 1608–1622; https://doi.org/10.3109/10717544.2015.113279710.3109/10717544.2015.113279726758033
- 146. R. R. Pereira, M. Testi, F. Rossi, J. O. C. Silva Junior, R. M. Ribeiro-Costa, R. Bettini, P. Santi, C. Padula and F. Sonvico, Ucuùba (Virola surinamensis) fat-based nanostructured lipid carriers for nail drug delivery of ketoconazole: Development and optimization using Box-Behnken design, Pharmaceutics11 (2019) Article ID 284; https://doi.org/10.3390/pharmaceutics1106028410.3390/pharmaceutics11060284663098131212993
- 147. P. Kraisit and N. Sarisuta, Development of triamcinolone acetonide-loaded nanostructured lipid carriers (NLCs) for buccal drug delivery using the Box-Behnken design, Molecules23 (2018) Article ID 982; https://doi.org/10.3390/molecules2304098210.3390/molecules23040982601733829690622
- 148. V. Londhe and R. Shirsat, Formulation and characterization of fast-dissolving sublingual film of iloperidone using Box–Behnken design for enhancement of oral bioavailability, AAPS PharmSci-Tech19 (2018) 1392–1400; https://doi.org/10.1208/s12249-018-0954-y10.1208/s12249-018-0954-y29396734
- 149. K. Ghosal, D. Ghosh and S. K. Das, Preparation and evaluation of naringin-loaded polycaprolac-tone microspheres based oral suspension using Box-Behnken design, J. Mol. Liq.256 (2018) 49–57; https://doi.org/10.1016/j.molliq.2018.02.02410.1016/j.molliq.2018.02.024
- 150. M. Gad, H. E Zaazaa, S. M. Amer and M. A. Korany, Quality by Design approach for establishment of stability indicating method for determination of cefditoren pivoxil, J. Pharm. Anal. Insights2 (2017) (7 pages); https://doi.org/10.16966/2471-8122.11210.16966/2471-8122.112
- 151. T. E. Yalcin, S. Ilbasmis-Tamer and S. Takka, Development and characterization of gemcitabine hydrochloride loaded lipid polymer hybrid nanoparticles (LPHNs) using central composite design, Int. J. Pharm.548 (2018) 255–262; https://doi.org/10.1016/j.ijpharm.2018.06.06310.1016/j.ijpharm.2018.06.06329969712
- 152. U. C. Oz, B. Küçüktürkmen, B. Devrim, O. M. Saka and A. Bozkir, Development and optimization of alendronate sodium loaded PLGA nanoparticles by central composite design, Macromol. Res.27 (2019) 857–866; https://doi.org/10.1007/s13233-019-7119-z10.1007/s13233-019-7119-z
- 153. N. Sharma and S. Singh, Central composite designed ezetimibe solid dispersion for dissolution enhancement: Synthesis and in vitro evaluation, Ther. Deliv.10 (2019) 643–658; https://doi.org/10.4155/tde-2019-006310.4155/tde-2019-006331702450
- 154. A. R. Fares, A. N. Elmeshad and M. A. A. Kassem, Enhancement of dissolution and oral bioavail-ability of lacidipine via pluronic P123/F127 mixed polymeric micelles: Formulation, optimization using central composite design and in vivo bioavailability study, Drug Deliv.25 (2018) 132–142; https://doi.org/10.1080/10717544.2017.141951210.1080/10717544.2017.1419512605870629275642
- 155. S. Jebali, C. Belgacem, M. R. Louhaichi, S. Bahri and L. L. El Atarche, Application of factorial and Doehlert designs for the optimization of the simultaneous separation and determination of anti-migraine drugs in pharmaceutical formulations by RP-HPLC-UV, Int. J. Anal. Chem.2019 (2019) Article ID 9685750 (11 pages); https://doi.org/10.1155/2019/968575010.1155/2019/9685750671432431511775