Have a personal or library account? Click to login
Determination of penicillamine, tiopronin and glutathione in pharmaceutical formulations by kinetic spectrophotometry Cover

Determination of penicillamine, tiopronin and glutathione in pharmaceutical formulations by kinetic spectrophotometry

Open Access
|Apr 2021

References

  1. 1. G. Bjørklund, P. Oliinyk, R. Lysiuk, M. S. Rahaman, H. Antonyak, I. Lozynska, L. Lenchyk and M. Peana, Arsenic intoxication: general aspects and chelating agents, Arch. Toxicol.94 (2020) 1879–1897; https://doi.org/10.1007/s00204-020-02739-w10.1007/s00204-020-02739-w721046332388818
  2. 2. M. K. Lawson, M. Valko, M. T. D. Cronin and K. Jomová, Chelators in iron and copper toxicity, Curr. Pharmacol. Rep.2 (2016) 271–280; https://doi.org/10.1007/s40495-016-0068-810.1007/s40495-016-0068-8
  3. 3. M. Abou Chakra, A. E. Dellis, A. G. Papatsoris and M. Moussa, Established and recent developments in the pharmacological management of urolithiasis: an overview of the current treatment armamentarium, Expert Opin. Pharmacother.21 (2020) 85–96; https://doi.org/10.1080/14656566.2019.168597910.1080/14656566.2019.168597931714803
  4. 4. M. S. C. Morgan and M. S. Pearle, Medical management of renal stones, BMJ352 (2016) Article ID i52; https://doi.org/10.1136/bmj.i5210.1136/bmj.i5226977089
  5. 5. K. Aquilano, S. Baldelli and M. R. Ciriolo, Glutathione: New roles in redox signaling for an old antioxidant, Front. Pharmacol. 5 (2014) Article ID 196; https://doi.org/10.3389/fphar.2014.0019610.3389/fphar.2014.00196414409225206336
  6. 6. Y. Honda, T. Kessoku, Y. Sumida, T. Kobayashi, T. Kato, Y. Ogawa, W. Tomeno, K. Imajo, K. Fujita, M. Yoneda, K. Kataoka, M. Taguri, T. Yamanaka, Y. Seko, S. Tanaka, S. Saito, M. Ono, S. Oeda, Y. Eguchi, W. Aoi, K. Sato, Y. Itoh and A. Nakajima, Efficacy of glutathione for the treatment of nonalcoholic fatty liver disease: An open-label, single-arm, multicenter, pilot study, BMC Gastroenterol.17 (2017) Article ID 96 (8 pages); https://doi.org/10.1186/s12876-017-0652-310.1186/s12876-017-0652-3554943128789631
  7. 7. S. Weschawalit, S. Thongthip, P. Phutrakool and P. Asawanonda, Glutathione and its antiaging and antimelanogenic effects, Clin. Cosmet. Investig. Dermatol.10 (2017) 147–153; https://doi.org/10.2147/ccid.s12833910.2147/CCID.S128339541347928490897
  8. 8. British Pharmacopoeia, The Stationery Office, London 2009.
  9. 9. L. Litao, L. Jing, and L. Quanmin, A novel method for the determination of tiopronin by using potassium ferricyanide as spectroscopic probe reagent in pharmaceutical and urine samples, J. Anal. Chem.67 (2012) 41–46; https://doi.org/10.1134/s106193481201009110.1134/S1061934812010091
  10. 10. M. Skowron and W. Ciesielski, Spectrophotometric determination of methimazole, d-penicilla-mine, captopril, and disulfiram in pure form and drug formulations, J. Anal. Chem.66 (2011) 714–719; https://doi.org/10.1134/s106193481108013210.1134/S1061934811080132
  11. 11. L. Kukoc-Modun and N. Radic, Spectrophotometric determination of N-acetyl-l-cysteine and N-(2-mercaptopropionyl)-glycine in pharmaceutical preparations, Int. J. Anal. Chem. 2011 (2011) Article ID 140756; https://doi.org/10.1155/2011/14075610.1155/2011/140756310384521647283
  12. 12. Q. Li and L. Gao, Spectrophotometric determination of tiopronin using its catalytic reaction between sodium 1,2-naphthoquinone-4-sulfonate and hydroxyl ion, Anal. Sci.25 (2009) 89–93; https://doi.org/10.2116/analsci.25.8910.2116/analsci.25.89
  13. 13. A. A. Al-Majed, Spectrophotometric estimation of D-penicillamine in bulk and dosage forms using 2,6-dichloroquinone-4-chlorimide (DCQ), J. Pharm. Biomed. Anal.21 (1999) 827–833; https://doi.org/10.1016/s0731-7085(99)00215-010.1016/S0731-7085(99)00215-0
  14. 14. M. A. Raggi, L. Nobile and A. G. Giovannini, Spectrophotometric determination of glutathione and of its oxidation product in pharmaceutical dosage forms, J. Pharm. Biomed. Anal.9 (1991) 1037–1040; https://doi.org/10.1016/0731-7085(91)80041-710.1016/0731-7085(91)80041-7
  15. 15. A. Besada, N. B. Tadros and Y. A. Gawargious, Copper(II)-neocuproine as colour reagent for some biologically active thiols: Spectrophotometric determination of cysteine, penicillamine, glutathione, and 6-mercaptopurine, Mikrochim. Acta99 (1989) 143–146; https://doi.org/10.1007/bf0124280010.1007/BF01242800
  16. 16. Y. H. Chen, F. S. Tian and G. F. Zhang, High-sensitivity spectrofluorimetric determination of tiopronin based on inhibition of hemoglobin, Luminescence26 (2011) 477–480; https://doi.org/10.1002/bio.125510.1002/bio.1255
  17. 17. J. Xu, R. Cai, J. Wang, Z. Liu and X. Wu, Fluorometric assay of tiopronin based on inhibition of multienzyme redox system, J. Pharm. Biomed. Anal.39 (2005) 334–338; https://doi.org/10.1016/j.jpba.2005.03.00410.1016/j.jpba.2005.03.004
  18. 18. S. M. Al-Ghannam, A. M. El-Brashy and B. S. Al-Farhan, Fluorimetric determination of some thiol compounds in their dosage forms, Farmaco57 (2002) 625–629; https://doi.org/10.1016/s0014-827x(02)01223-510.1016/S0014-827X(02)01223-5
  19. 19. A. A. Al-Majed, Specific spectrofluorometric quantification of D-penicillamine in bulk and dosage forms after derivatization with 4-fluoro-7-nitrobenzo-2-oxa-1,3-diazole, Anal. Chim. Acta408 (2000) 169–175; https://doi.org/10.1016/s0003-2670(99)00869-710.1016/S0003-2670(99)00869-7
  20. 20. J. A. Murillo Pulgarín, J. M. Lemus Gallego and M. N. Sánchez García, Determination of tiopronin in pharmaceutical preparations by time resolved chemiluminescence using the stopped-flow technique, Anal. Lett.46 (2013) 1836–1848; https://doi.org/10.1080/00032719.2012.73530510.1080/00032719.2012.735305
  21. 21. F. E. O. Suliman, M. M. Al-Hinai, S. M. Z. Al-Kindy and S. B. Salama, Enhancement of the chemiluminescence of penicillamine and ephedrine after derivatization with aldehydes using tris(bipyridyl) ruthenium(II) peroxydisulfate system and its analytical application, Talanta74 (2008) 1256–1264; https://doi.org/10.1016/j.talanta.2007.08.04010.1016/j.talanta.2007.08.04018371778
  22. 22. J. Lu, C. Lau, S. Yagisawa, K. Ohta and M. Kai, A simple and sensitive chemiluminescence method for the determination of tiopronin for a pharmaceutical formulation, J. Pharm. Biomed. Anal.33 (2003) 1033–1038; https://doi.org/10.1016/s0731-7085(03)00413-810.1016/S0731-7085(03)00413-8
  23. 23. J. B. Raoof, R. Ojani, M. Majidian and F. Chekin, Homogeneous electrocatalytic oxidation of D-penicillamine with ferrocyanide at a carbon paste electrode: Application to voltammetric determination, J. Appl. Electrochem.39 (2009) 799–805; https://doi.org/10.1007/s10800-008-9724-y10.1007/s10800-008-9724-y
  24. 24. J. B. Raoof, R. Ojani and F. Chekin, Electrochemical oxidation of 4-chlorocatechol in the presence of some sulphydryl compounds: Applications to voltammetric detection of d-penicillamine, glutathione and l-cysteine, Anal. Bioanal. Electrochem.1 (2009) 200–215; https://www.researchgate.net/publication/279705715
  25. 25. A. A. J. Torriero, H. D. Piola, N. A. Martínez, N. V. Panini, J. Raba and J. J. Silber, Enzymatic oxidation of tert-butylcatechol in the presence of sulfhydryl compounds: Application to the amperometric detection of penicillamine, Talanta71 (2007) 1198–1204; https://doi.org/10.1016/j.talanta.2006.06.02710.1016/j.talanta.2006.06.027
  26. 26. A. Martinović and N. Radić, Kinetic potentiometric determination of some thiols with iodide ion-sensitive electrode, Anal. Lett.40 (2007) 2851–2859; https://doi.org/10.1080/0003271070160388410.1080/00032710701603884
  27. 27. L. Kukoc-Modun and N. Radić, Potentiometric determination of N-(2-Mercaptopropionyl)-glycine using an electrode with AgI-based membrane, Croat. Chem. Acta79 (2006) 533–539.
  28. 28. R. M. Soliman, G. M. Hadad, R. A. Abdel Salam and M. K. Mesbah, Quantitative determination of glutathione in presence of its degradant in a pharmaceutical preparation using HPLC-DAD and identification by LC-ESI-MS, J. Liq. Chromatogr. Relat. Technol.37 (2014) 548–559; https://doi.org/10.1080/10826076.2012.74949710.1080/10826076.2012.749497
  29. 29. V. Sutariya, D. Wehrung and W. J. Geldenhuys, Development and validation of a novel RP-HPLC method for the analysis of reduced glutathione, J. Chromatogr. Sci.50 (2012) 271–276; https://doi.org/10.1093/chromsci/bmr05510.1093/chromsci/bmr055
  30. 30. L. Manna, L. Valvo and P. Betto, Determination of oxidized and reduced glutathione in pharmaceuticals by reversed-phase high-performance liquid chromatography with dual electrochemical detection, J. Chromatogr. A846 (1999) 59–64; https://doi.org/10.1016/s0021-9673(99)00427-610.1016/S0021-9673(99)00427-6
  31. 31. A. Martinović-Bevanda and N. Radić, Spectrophotometric sequential injection determination of D-penicillamine based on a complexation reaction with nickel ion, Anal. Sci.29 (2013) 669–671; https://doi.org/10.2116/analsci.29.66910.2116/analsci.29.66923749136
  32. 32. T. D. Karakosta and P. D. Tzanavaras, Automated derivatization of pharmaceutically active thiols under flow conditions using an o-phthalaldehyde/glycine fluorogenic system and sequential injection analysis, Anal. Lett.44 (2011) 2530–2542; https://doi.org/10.1080/00032719.2011.55186210.1080/00032719.2011.551862
  33. 33. L. Kukoc-Modun and N. Radić, Flow-injection spectrophotometric determination of tiopronin based on coupled redox-complexation reaction, Chem. Anal. (Warsaw) 54 (2009) 871–882; https://www.bib.irb.hr/395955
  34. 34. F. E. O. Suliman, Z. H. Al-Lawati and S. M. Z. Al-Kindy, A spectrofluorimetric sequential injection method for the determination of penicillamine using fluorescamine in the presence of β-cyclodextrins, J. Fluoresc.18 (2008) 1131–1138; https://doi.org/10.1007/s10895-008-0363-910.1007/s10895-008-0363-918496741
  35. 35. B. G. T. Corominas, J. Pferzschner, M. C. Icardo, L. L. Zamora and J. M. Calatayud, In situ generation of Co(II) by use of a solid-phase reactor in an FIA assembly for the spectrophotometric determination of penicillamine, J. Pharm. Biomed. Anal.39 (2005) 281–284; https://doi.org/10.1016/j.jpba.2005.02.04410.1016/j.jpba.2005.02.044
  36. 36. A. Agarwal, S. Prasad and R. M. Naik, Inhibitory kinetic spectrophotometric method for the quantitative estimation of D-penicillamine at micro levels, Microchem. J.128 (2016) 181–186; https://doi.org/10.1016/j.microc.2016.04.00510.1016/j.microc.2016.04.005
  37. 37. R. M. Naik, S. Prasad, B. Kumar and V. Chand, Kinetic assay of D-penicillamine in pure and pharmaceutical formulations based on ligand substitution reaction, Microchem. J.111 (2013) 97–102; https://doi.org/10.1016/j.microc.2012.07.01510.1016/j.microc.2012.07.015
  38. 38. M. I. Walash, A. M. El-Brashy, M. S. Metwally and A. A. Abdelal, Spectrophotometric and kinetic determination of some sulphur containing drugs in bulk and drug formulations, Bull. Korean Chem. Soc.25 (2004) 517–524; https://doi.org/10.5012/bkcs.2004.25.4.51710.5012/bkcs.2004.25.4.517
  39. 39. M. I. Walash, M. E. S. Metwally, A. M. El-Brashy and A. A. Abdelal, Kinetic spectrophotometric determination of some sulfur containing compounds in pharmaceutical preparations and human serum, Farmaco58 (2003) 1325–1332; https://doi.org/10.1016/s0014-827x(03)00167-810.1016/S0014-827X(03)00167-8
  40. 40. A. Martinović, L. Kukoc-Modun and N. Radić, Kinetic spectrophotometric determination of thiols and ascorbic acid, Anal. Lett.40 (2007) 805–815; https://doi.org/10.1080/0003271060101793810.1080/00032710601017938
  41. 41. L. Kukoc-Modun and N. Radić, Novel kinetic spectrophotometric method for determination of tiopronin [N-(2-mercaptopropionyl)-glycine], Croat. Chem. Acta83 (2010) 189–195.
  42. 42. L. Kukoc-Modun and N. Radic, Kinetic spectrophotometric determination of N-acetyl-l-cysteine based on a coupled redox-complexation reaction, Anal. Sci.26 (2010) 491–495; https://doi.org/10.2116/analsci.26.49110.2116/analsci.26.49120410574
  43. 43. N. Radić, L. Kukoc-Modun and M. Biocic, Kinetic spectrophotometric determination of N-acetyl- - l-cysteine based on the reduction of copper(II)-neocuproine reagent, Croat. Chem. Acta86 (2013) 65–71; https://doi.org/10.5562/cca216110.5562/cca2161
  44. 44. C. J. Hawkins and D. D. Perrin, Oxidation–reduction potentials of metal complexes in water. Part II. Copper complexes with 2,9-dimethyl- and 2-chloro-1,10-phenanthroline, J. Chem. Soc. (1963) 2996–3002; https://doi.org/10.1039/jr963000299610.1039/JR9630002996
DOI: https://doi.org/10.2478/acph-2021-0038 | Journal eISSN: 1846-9558 | Journal ISSN: 1330-0075
Language: English
Page range: 619 - 630
Accepted on: Oct 31, 2020
Published on: Apr 3, 2021
Published by: Croatian Pharmaceutical Society
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year
Related subjects:

© 2021 Lea Kukoc-Modun, Maja Biocic, Njegomir Radić, published by Croatian Pharmaceutical Society
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.