References
- 1. M. S. Tallman, D. G. Gilliland and J. M. Rowe, Drug therapy for acute myeloid leukemia, Blood106 (2005) 1154–1163; https://doi.org/10.1182/blood-2005-01-017810.1182/blood-2005-01-0178
- 2. E. Estey and H. Dohner, Acute myeloid leukaemia, Lancet368 (2006) 1894–1907; https://doi.org/10.1016/S0140-6736(06)69780-810.1016/S0140-6736(06)69780-8
- 3. J. Mao, S. Li, H. Zhao, Y. Zhu, M. Hong, H. Zhu, S. Qian and J. Li, Effects of chidamide and its combination with decitabine on proliferation and apoptosis of leukemia cell lines, Am. J. Transl. Res.10 (2018) 2567–2578.
- 4. E. Jabbour, D. Thomas, J. Cortes, H. M. Kantarjian and S. O’Brien, Central nervous system prophylaxis in adults with acute lymphoblastic leukemia: current and emerging therapies, Cancer116 (2010) 2290–300; https://doi.org/10.1002/cncr.2500810.1002/cncr.2500820209620
- 5. M. D. Kraszewska, M. Dawidowska, T. Szczepański and M. Witt, T-cell acute lymphoblastic leukaemia: recent molecular biology findings, Br. J. Haematol.156 (2015) 303–15; https://doi.org/10.1111/j.1365-2141.2011.08957.x10.1111/j.1365-2141.2011.08957.x22145858
- 6. R. Valentin, S. Grabow and M. S. Davids, The rise of apoptosis: Targeting apoptosis in hemato-logic malignancies, Blood132 (2018) 1248–1264; https://doi.org/10.1182/blood-2018-02-79135010.1182/blood-2018-02-79135030012635
- 7. K. Durinck, S. Goossens, S. Peirs, A. Wallaert, W. Van Loocke, F. Matthijssens, T. Pieters, G. Milani, T. Lammens, P. Rondou and N. Van Roy, Novel biological insights in T-cell acute lymphoblastic leukemia, Exp. Hematol.43 (2015) 625–639; https://doi.org/10.1016/j.exphem.2015.05.01710.1016/j.exphem.2015.05.01726123366
- 8. S. H. Kang, S. J. Jeong, S. H. Kim, J. H. Kim, J. H. Jung, W. Koh, J. H. Kim, D. K. Kim, C. Y. Chen and S. H. Kim, Icariside II induces apoptosis in U937 acute myeloid leukemia cells: Role of inactivation of STAT3-related signaling, PLOS One7 (2012) e28706; https://doi.org/10.1371/journal.pone.002870610.1371/journal.pone.0028706332088722493659
- 9. Y. Küley-Bagheri, K. A. Kreuzer, I. Monsef, M. Lübbert and N. Skoetz, Effects of all-trans retinoic acid (ATRA) in addition to chemotherapy for adults with acute myeloid leukaemia (AML) (non-acute promyelocytic leukaemia (non-APL), Cochrane Database of Systematic Reviews8 (2018) Cd011960; https://doi.org/10.1002/14651858.CD011960.pub210.1002/14651858.CD011960.pub2651362830080246
- 10. L. Mei, E. P. Ontiveros, E. A. Griffiths, J. E. Thompson, E. S. Wang and M. Wetzler, Pharmacogenetics predictive of response and toxicity in acute lymphoblastic leukemia therapy, Blood Rev. 29 (2015) 243–249; https://doi.org/10.1016/j.blre.2015.01.00110.1016/j.blre.2015.01.001449487025614322
- 11. S. Samala and C. Veerasham, Ehanced bioavalibity of glimepiride in the presence of boswellic acids in streptozotocin-induced diabetic rat model, Nat. Prod. Chem. Res. 1 (2013) 116.
- 12. S. G. D. Oliveira, E. Piva and R. G, Lund The PO possibility of Interactions between medicinal herbs and allopathic medicines used by patients attended at basic care units of the Brazilian unified health system, Nat. Prod. Chem. Res.3 (2015) 171; http://dx.doi.org/10.4172/2329-6836.100017110.4172/2329-6836.1000171
- 13. G. M. Cragg and D. J. Newman, Biodiversity: A continuing source of novel drug leads, Pure Appl. Chem. 77 (2005) 7–24.
- 14. C. Kim and B. Kim, Anti-cancer natural products and their bioactive compounds inducing ER stress-mediated apoptosis: A Review, Nutrients10 (2018) 1021; https://doi.org/10.3390/nu1008102110.3390/nu10081021
- 15. R. A. Maplestone, M. J. Stone and D. H. Williams, The evolutionary role of secondary metabolites-A review, Gene115 (1992) 151–157; https://doi.org/10.1016/0378-1119(92)90553-210.1016/0378-1119(92)90553-2
- 16. S. Russmann, B. H. Lauterburg, Y. Barguil, E. Choblet, P. Cabalion, K. Rentsch and M. Wenk, Traditional aqueous kava extracts inhibit cytochrome P450 1A2 in humans: protective effect against environmental carcinogens, Clin. Pharmacol. Ther.77 (2005) 453–454; https://doi.org/10.1016/j.clpt.2005.01.02110.1016/j.clpt.2005.01.021
- 17. Y. Ma, K. Sachdeva, J. Liu, M. Ford, D. Yang, I. A. Khan, C. O. Chichester and B. Yan, Desmethoxyyangonin and dihydromethysticin are two major pharmacological kavalactones with marked activity on the induction of CYP3A23, Drug. Metab. Dispos.32 (2004) 1317–1324; https://doi.org/10.1124/dmd.104.00078610.1124/dmd.104.000786
- 18. J. Walden, J. von Wegerer, U. Winter, M. Berger and H. Grunze H, Effects of kawain and dihydromethysticin on field potential changes in the hippocampus, Prog. Neuro-Psychopharmacol. Biol. Psychiatry21 (1997) 697–706.10.1016/S0278-5846(97)00042-0
- 19. J. Sarris, E. Laporte and I. Schweitzer, Kava: A comprehensive review of efficacy, safety, and psycho-pharmacology, Aust. N. Z. J. Psychiatry45 (2011) 27–35; https://doi.org/10.3109%2F00048674.2010.522554
- 20. Y. N. Singh and N. N. Singh, Therapeutic potential of kava in the treatment of anxiety disorders, Mol. Diag. Ther.16 (2002) 731–743; https://doi.org/10.2165/00023210-200216110-0000210.2165/00023210-200216110-0000212383029
- 21. J. Q. Dai, Y. G Huang and A. N. He, Dihydromethysticin kavalactone induces apoptosis in osteosarcoma cells through modulation of PI3K/Akt pathway, disruption of mitochondrial membrane potential and inducing cell cycle arrest, Int. J. Clin. Exp. Pathol.8 (2015) 4356–4366.
- 22. H. Pan, F. Liu, J. Wang, et al. Dihydromethysticin, a natural molecule from Kava, suppresses the growth of colorectal cancer via the NLRC3/PI3K pathway, Mol. Carcinog. 59 (2020) 575–589; https://doi.org/10.1002/mc.2318210.1002/mc.2318232187756
- 23. M. D. Megonigal, E. F. Rappaport, D. H. Jones, C. S. Kim, P. C. Nowell, B. J. Lange and C. A. Felix, Panhandle PCR strategy to amplify MLL genomic breakpoints in treatment-related leukemias, Proc. Natl. Acad. Sci.94 (1997) 11583–11588; https://doi.org/10.1073/pnas.94.21.1158310.1073/pnas.94.21.11583235469326653
- 24. A. S. Sreedhar and P. Csermely, Heat shock proteins in the regulation of apoptosis: new strategies in tumor therapy: a comprehensive review, Pharmacol. Ther.101 (2004) 227–257; https://doi.org/10.1016/j.pharmthera.2003.11.00410.1016/j.pharmthera.2003.11.00415031001
- 25. K. Zhang, A. N. Ezemaduka, Z. Wang, H. Hu, X. Shi, C. Liu, X. Lu, X. Fu, Z. Chang and C. C. Yin, A novel mechanism for small heat shock proteins to function as molecular chaperones, Sci. Rep.5 (2015) 8811; https://doi.org/10.1038/srep0881110.1038/srep08811435154925744691
- 26. W. Tang and G. Zhao, Small molecules targeting HIF-1α pathway for cancer therapy in recent years, Bioorg. Med. Chem.332 (2013) 275–285; https://doi.org/10.1016/j.bmc.2019.11523510.1016/j.bmc.2019.11523531843464
- 27. A.O. Oyewole, M. C. Wilmot, M. Fowler and M. A. Birch-Machin, Comparing the effects of mitochondrial targeted and localized antioxidants with cellular antioxidants in human skin cells exposed to UVA and hydrogen peroxide, FASEB J.28 (2014) 485–494; https://doi.org/10.1096/fj.13-23700810.1096/fj.13-23700824115050
- 28. F. Wang, X. Ye, D. Zhai, W. Dai, Y. Wu, J. Chen and W. Chen, Curcumin-loaded nanostructured lipid carrier induced apoptosis in human HepG2 cells through activation of the DR5/caspase-mediated extrinsic apoptosis pathway, Acta Pharm. 70 (2020) 227–237; https://doi.org/10.2478/acph-2020-000310.2478/acph-2020-000331955141
- 29. F. Seif, M. Khoshmirsafa, H. Aazami, M. Mohsenzadegan, G. Sedighi and M. Bahar, The role of JAK-STAT signaling pathway and its regulators in the fate of T helper cells, Cell Commun. Signal.15 (2017) 23; https://doi.org/10.1186/s12964-017-0177-y10.1186/s12964-017-0177-y548018928637459