Have a personal or library account? Click to login
Anticancer effects of 7,8-dihydromethysticin in human leukemia cells are mediated via cell-cycle dysregulation, inhibition of cell migration and invasion and targeting JAK/STAT pathway Cover

Anticancer effects of 7,8-dihydromethysticin in human leukemia cells are mediated via cell-cycle dysregulation, inhibition of cell migration and invasion and targeting JAK/STAT pathway

By: Yi Xiao,  Taoran Deng,  Lijun Jiang and  Di Wang  
Open Access
|Apr 2021

References

  1. 1. M. S. Tallman, D. G. Gilliland and J. M. Rowe, Drug therapy for acute myeloid leukemia, Blood106 (2005) 1154–1163; https://doi.org/10.1182/blood-2005-01-017810.1182/blood-2005-01-0178
  2. 2. E. Estey and H. Dohner, Acute myeloid leukaemia, Lancet368 (2006) 1894–1907; https://doi.org/10.1016/S0140-6736(06)69780-810.1016/S0140-6736(06)69780-8
  3. 3. J. Mao, S. Li, H. Zhao, Y. Zhu, M. Hong, H. Zhu, S. Qian and J. Li, Effects of chidamide and its combination with decitabine on proliferation and apoptosis of leukemia cell lines, Am. J. Transl. Res.10 (2018) 2567–2578.
  4. 4. E. Jabbour, D. Thomas, J. Cortes, H. M. Kantarjian and S. O’Brien, Central nervous system prophylaxis in adults with acute lymphoblastic leukemia: current and emerging therapies, Cancer116 (2010) 2290–300; https://doi.org/10.1002/cncr.2500810.1002/cncr.2500820209620
  5. 5. M. D. Kraszewska, M. Dawidowska, T. Szczepański and M. Witt, T-cell acute lymphoblastic leukaemia: recent molecular biology findings, Br. J. Haematol.156 (2015) 303–15; https://doi.org/10.1111/j.1365-2141.2011.08957.x10.1111/j.1365-2141.2011.08957.x22145858
  6. 6. R. Valentin, S. Grabow and M. S. Davids, The rise of apoptosis: Targeting apoptosis in hemato-logic malignancies, Blood132 (2018) 1248–1264; https://doi.org/10.1182/blood-2018-02-79135010.1182/blood-2018-02-79135030012635
  7. 7. K. Durinck, S. Goossens, S. Peirs, A. Wallaert, W. Van Loocke, F. Matthijssens, T. Pieters, G. Milani, T. Lammens, P. Rondou and N. Van Roy, Novel biological insights in T-cell acute lymphoblastic leukemia, Exp. Hematol.43 (2015) 625–639; https://doi.org/10.1016/j.exphem.2015.05.01710.1016/j.exphem.2015.05.01726123366
  8. 8. S. H. Kang, S. J. Jeong, S. H. Kim, J. H. Kim, J. H. Jung, W. Koh, J. H. Kim, D. K. Kim, C. Y. Chen and S. H. Kim, Icariside II induces apoptosis in U937 acute myeloid leukemia cells: Role of inactivation of STAT3-related signaling, PLOS One7 (2012) e28706; https://doi.org/10.1371/journal.pone.002870610.1371/journal.pone.0028706332088722493659
  9. 9. Y. Küley-Bagheri, K. A. Kreuzer, I. Monsef, M. Lübbert and N. Skoetz, Effects of all-trans retinoic acid (ATRA) in addition to chemotherapy for adults with acute myeloid leukaemia (AML) (non-acute promyelocytic leukaemia (non-APL), Cochrane Database of Systematic Reviews8 (2018) Cd011960; https://doi.org/10.1002/14651858.CD011960.pub210.1002/14651858.CD011960.pub2651362830080246
  10. 10. L. Mei, E. P. Ontiveros, E. A. Griffiths, J. E. Thompson, E. S. Wang and M. Wetzler, Pharmacogenetics predictive of response and toxicity in acute lymphoblastic leukemia therapy, Blood Rev. 29 (2015) 243–249; https://doi.org/10.1016/j.blre.2015.01.00110.1016/j.blre.2015.01.001449487025614322
  11. 11. S. Samala and C. Veerasham, Ehanced bioavalibity of glimepiride in the presence of boswellic acids in streptozotocin-induced diabetic rat model, Nat. Prod. Chem. Res. 1 (2013) 116.
  12. 12. S. G. D. Oliveira, E. Piva and R. G, Lund The PO possibility of Interactions between medicinal herbs and allopathic medicines used by patients attended at basic care units of the Brazilian unified health system, Nat. Prod. Chem. Res.3 (2015) 171; http://dx.doi.org/10.4172/2329-6836.100017110.4172/2329-6836.1000171
  13. 13. G. M. Cragg and D. J. Newman, Biodiversity: A continuing source of novel drug leads, Pure Appl. Chem. 77 (2005) 7–24.
  14. 14. C. Kim and B. Kim, Anti-cancer natural products and their bioactive compounds inducing ER stress-mediated apoptosis: A Review, Nutrients10 (2018) 1021; https://doi.org/10.3390/nu1008102110.3390/nu10081021
  15. 15. R. A. Maplestone, M. J. Stone and D. H. Williams, The evolutionary role of secondary metabolites-A review, Gene115 (1992) 151–157; https://doi.org/10.1016/0378-1119(92)90553-210.1016/0378-1119(92)90553-2
  16. 16. S. Russmann, B. H. Lauterburg, Y. Barguil, E. Choblet, P. Cabalion, K. Rentsch and M. Wenk, Traditional aqueous kava extracts inhibit cytochrome P450 1A2 in humans: protective effect against environmental carcinogens, Clin. Pharmacol. Ther.77 (2005) 453–454; https://doi.org/10.1016/j.clpt.2005.01.02110.1016/j.clpt.2005.01.021
  17. 17. Y. Ma, K. Sachdeva, J. Liu, M. Ford, D. Yang, I. A. Khan, C. O. Chichester and B. Yan, Desmethoxyyangonin and dihydromethysticin are two major pharmacological kavalactones with marked activity on the induction of CYP3A23, Drug. Metab. Dispos.32 (2004) 1317–1324; https://doi.org/10.1124/dmd.104.00078610.1124/dmd.104.000786
  18. 18. J. Walden, J. von Wegerer, U. Winter, M. Berger and H. Grunze H, Effects of kawain and dihydromethysticin on field potential changes in the hippocampus, Prog. Neuro-Psychopharmacol. Biol. Psychiatry21 (1997) 697–706.10.1016/S0278-5846(97)00042-0
  19. 19. J. Sarris, E. Laporte and I. Schweitzer, Kava: A comprehensive review of efficacy, safety, and psycho-pharmacology, Aust. N. Z. J. Psychiatry45 (2011) 27–35; https://doi.org/10.3109%2F00048674.2010.522554
  20. 20. Y. N. Singh and N. N. Singh, Therapeutic potential of kava in the treatment of anxiety disorders, Mol. Diag. Ther.16 (2002) 731–743; https://doi.org/10.2165/00023210-200216110-0000210.2165/00023210-200216110-0000212383029
  21. 21. J. Q. Dai, Y. G Huang and A. N. He, Dihydromethysticin kavalactone induces apoptosis in osteosarcoma cells through modulation of PI3K/Akt pathway, disruption of mitochondrial membrane potential and inducing cell cycle arrest, Int. J. Clin. Exp. Pathol.8 (2015) 4356–4366.
  22. 22. H. Pan, F. Liu, J. Wang, et al. Dihydromethysticin, a natural molecule from Kava, suppresses the growth of colorectal cancer via the NLRC3/PI3K pathway, Mol. Carcinog. 59 (2020) 575–589; https://doi.org/10.1002/mc.2318210.1002/mc.2318232187756
  23. 23. M. D. Megonigal, E. F. Rappaport, D. H. Jones, C. S. Kim, P. C. Nowell, B. J. Lange and C. A. Felix, Panhandle PCR strategy to amplify MLL genomic breakpoints in treatment-related leukemias, Proc. Natl. Acad. Sci.94 (1997) 11583–11588; https://doi.org/10.1073/pnas.94.21.1158310.1073/pnas.94.21.11583235469326653
  24. 24. A. S. Sreedhar and P. Csermely, Heat shock proteins in the regulation of apoptosis: new strategies in tumor therapy: a comprehensive review, Pharmacol. Ther.101 (2004) 227–257; https://doi.org/10.1016/j.pharmthera.2003.11.00410.1016/j.pharmthera.2003.11.00415031001
  25. 25. K. Zhang, A. N. Ezemaduka, Z. Wang, H. Hu, X. Shi, C. Liu, X. Lu, X. Fu, Z. Chang and C. C. Yin, A novel mechanism for small heat shock proteins to function as molecular chaperones, Sci. Rep.5 (2015) 8811; https://doi.org/10.1038/srep0881110.1038/srep08811435154925744691
  26. 26. W. Tang and G. Zhao, Small molecules targeting HIF-1α pathway for cancer therapy in recent years, Bioorg. Med. Chem.332 (2013) 275–285; https://doi.org/10.1016/j.bmc.2019.11523510.1016/j.bmc.2019.11523531843464
  27. 27. A.O. Oyewole, M. C. Wilmot, M. Fowler and M. A. Birch-Machin, Comparing the effects of mitochondrial targeted and localized antioxidants with cellular antioxidants in human skin cells exposed to UVA and hydrogen peroxide, FASEB J.28 (2014) 485–494; https://doi.org/10.1096/fj.13-23700810.1096/fj.13-23700824115050
  28. 28. F. Wang, X. Ye, D. Zhai, W. Dai, Y. Wu, J. Chen and W. Chen, Curcumin-loaded nanostructured lipid carrier induced apoptosis in human HepG2 cells through activation of the DR5/caspase-mediated extrinsic apoptosis pathway, Acta Pharm. 70 (2020) 227–237; https://doi.org/10.2478/acph-2020-000310.2478/acph-2020-000331955141
  29. 29. F. Seif, M. Khoshmirsafa, H. Aazami, M. Mohsenzadegan, G. Sedighi and M. Bahar, The role of JAK-STAT signaling pathway and its regulators in the fate of T helper cells, Cell Commun. Signal.15 (2017) 23; https://doi.org/10.1186/s12964-017-0177-y10.1186/s12964-017-0177-y548018928637459
DOI: https://doi.org/10.2478/acph-2021-0037 | Journal eISSN: 1846-9558 | Journal ISSN: 1330-0075
Language: English
Page range: 645 - 655
Accepted on: Oct 27, 2020
Published on: Apr 3, 2021
Published by: Croatian Pharmaceutical Society
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year
Related subjects:

© 2021 Yi Xiao, Taoran Deng, Lijun Jiang, Di Wang, published by Croatian Pharmaceutical Society
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.