References
- 1. N. A. Alqallaf, H. A. G. Saleh, A. M. Abdu, S. H. Almuntaser, S. A. Bin Rakhis, A. A. Almughamis, A. A. Ghanim, A. S. Alkhathami, N. A. Aldossari and G. M. Ahmad, Colon cancer screening and prevention, Indo. Am. J. Pharm. Sci.5 (2018) 13071–13078; https://doi.org/10.5281/zenodo.1495157
- 2. R. L. Siegel, K. D. Miller, S. A. Fedewa, D. J. Ahnen, R. G. S. Meester, A. Barzi and A. Jemal, Colorectal cancer statistics, CA: Cancer J. Clin.67 (2017) 177–193; https://doi.org/10.3322/caac.2139510.3322/caac.2139528248415
- 3. H. S. Wong and W. C. Chang, Correlation of clinical features and genetic profiles of stromal interaction molecule 1 (STIM1) in colorectal cancers, Oncotarget6 (2015) 42169–42182; https://doi.org/10.18632/oncotarget.588810.18632/oncotarget.5888474721726543234
- 4. B. K. Edwards, E. Ward, B. A. Kohler, C. Eheman, A. G. Zauber, R. N. Anderson, A. Jemal, M. J. Schymura, I. Lansdorp-Vogelaar, L. C. Seeff, M. van Ballegooijen, S. L. Goede and L. A. G. Ries, Annual report to the nation on the status of cancer, 1975-2006, Featuring colorectal cancer trends and impact of interventions (Risk factors, screening, and treatment) to reduce future rates, Cancer116 (2010) 544–573; https://doi.org/10.1002/cncr.2476010.1002/cncr.24760361972619998273
- 5. M. Wang, Y. R. Li and X. D. Hu, Chebulinic acid derived from triphala is a promising antitumour agent in human colorectal carcinoma cell lines, BMC Complement. Altern. Med.18 (2018) 342; https://doi.org/10.1186/s12906-018-2412-510.1186/s12906-018-2412-5630717430587184
- 6. H. M. Li, S. Krstin and M. Wink, Modulation of multidrug resistant in cancer cells by EGCG, tannic acid and curcumin, Phytomedicine50 (2018) 213–222; https://doi.org/10.1016/j.phymed.2018.09.16910.1016/j.phymed.2018.09.16930466981
- 7. Y. M. Zheng, J. Z. Shen, Y. Wang, A. X. Lu and W. S. Ho, Anti-oxidant and anti-cancer activities of Angelica dahurica extract via induction of apoptosis in colon cancer cells, Phytomedicine23 (2016) 1267–1274; https://doi.org/10.1016/j.phymed.2015.11.00810.1016/j.phymed.2015.11.00826776960
- 8. S. Dasari and P. B. Tchounwou, Cisplatin in cancer therapy: molecular mechanisms of action, Eur. J. Pharmacol.740 (2014) 364–378; https://doi.org/10.1016/j.ejphar.2014.07.02510.1016/j.ejphar.2014.07.025414668425058905
- 9. P. Apostolou, M. Toloudi, M. Chatziioannou, E. Ioannou, D. R. Knocke, J. Nester, D. Komiotis and I. Papasotiriou, Anvirzel in combination with cisplatin in breast, colon, lung, prostate, melanoma and pancreatic cancer cell lines, BMC Pharmacol. Toxicol.14 (2013) 18; https://doi.org/10.1186/2050-6511-14-1810.1186/2050-6511-14-18363717223521834
- 10. G. Maisetta, G. Batoni, P. Caboni, S. Esin, A. C. Rinaldi and P. Zucca, Tannin profile, antioxidant properties, and antimicrobial activity of extracts from two Mediterranean species of parasitic plant Cytinus, BMC Complement. Altern. Med.19 (2019) 82; https://doi.org/10.1186/s12906-019-2487-710.1186/s12906-019-2487-7645122530952208
- 11. J. Dai and R. J. Mumper, Plant phenolics: extraction, analysis and their antioxidant and anticancer properties, Molecules15 (2010) 7313–7352; https://doi.org/10.3390/molecules1510731310.3390/molecules15107313625914620966876
- 12. M. P. Borisova, A. A. Kataev and V. S. Sivozhelezov, Action of tannin on cellular membranes: Novel insights from concerted studies on lipid bilayers and native cells, BBA – Biomembrane1861 (2019) 1103–1111; https://doi.org/10.1016/j.bbamem.2019.03.01710.1016/j.bbamem.2019.03.017
- 13. S. Karakurt and O. Adali, Effect of tannic acid on glutathione S-transferase and NAD(P)H: Quinone oxidoreductase 1 enzymes in rabbit liver and kidney, Fresen. Environ. Bull.20 (2011) 1804–1811.
- 14. S. Quideau, D. Deffieux, C. Douat-Casassus and L. Pouysegu, Plant polyphenols: Chemical properties, biological activities, and synthesis, Angew. Chem. Int. Edit.50 (2011) 586–621; https://doi.org/10.1002/anie.20100004410.1002/anie.201000044
- 15. J. Das, R. Ramani and M. O. Suraju, Polyphenol compounds and PKC signaling, Biochim. Biophys. Acta1860 (2016) 2107–2121; https://doi.org/10.1016/j.bbagen.2016.06.02210.1016/j.bbagen.2016.06.022
- 16. N. Sahiner, S. Sagbas, N. Aktas and C. Silan, Inherently antioxidant and antimicrobial tannic acid release from poly(tannic acid) nanoparticles with controllable degradability, Colloid Surface B142 (2016) 334–343; https://doi.org/10.1016/j.colsurfb.2016.03.00610.1016/j.colsurfb.2016.03.006
- 17. J. Zhang, D. Chen, D. M. Han, Y. H. Cheng, C. Dai, X. J. Wu, F. Y. Che and X. Y. Heng, Tannic acid mediated induction of apoptosis in human glioma Hs 683 cells, Oncol. Lett.15 (2018) 6845–6850; https://doi.org/10.3892/ol.2018.819710.3892/ol.2018.8197
- 18. Y. Ren, X. Li, B. Han, N. Zhao, M. Mu, C. Wang, Y. Du, Y. Wang, A. Tong, Y. Liu, L. Zhou, C. You and G. Guo, Improved anti-colorectal carcinomatosis effect of tannic acid co-loaded with oxaliplatin in nanoparticles encapsulated in thermosensitive hydrogel, Eur. J. Pharm. Sci.128 (2019) 279–289; https://doi.org/10.1016/j.ejps.2018.12.00710.1016/j.ejps.2018.12.007
- 19. X. Zhang, H. Zhang, N. Zhou, J. Xu, M. Si, Z. Jia, X. Du and H. Zhang, Tannic acid modulates excitability of sensory neurons and nociceptive behavior and the Ionic mechanism, Eur. J. Pharmacol.764 (2015) 633–642; https://doi.org/10.1016/j.ejphar.2015.06.04810.1016/j.ejphar.2015.06.048
- 20 G. Goel, A. K. Puniya and K. Singh, Tannic acid resistance in ruminal streptococcal isolates, J. Basic Microbiol.45 (2005) 243–245; https://doi.org/10.1002/jobm.20041051710.1002/jobm.200410517
- 21. G. K. Lopes, H. M. Schulman and M. Hermes-Lima, Polyphenol tannic acid inhibits hydroxyl radical formation from Fenton reaction by complexing ferrous ions, Biochim. Biophys. Acta1472 (1999) 142–152; https://doi.org/10.1016/s0304-4165(99)00117-810.1016/S0304-4165(99)00117-8
- 22. L. Ernster, L. Danielson and M. Ljunggren, Dt diaphorase I. Purification from the soluble fraction of rat-liver cytoplasm, and properties, Biochim. Biophys. Acta58 (1962) 171–188; https://doi.org/10.1016/0006-3002(62)90997-610.1016/0006-3002(62)90997-6
- 23. Z. Anusevicius, J. Sarlauskas and N. Cenas, Two-electron reduction of quinones by rat liver NAD(P) H:quinone oxidoreductase: quantitative structure-activity relationships, Arch. Biochem. Biophys.404 (2002) 254–262; https://doi.org/10.1016/S0003-9861(02)00273-410.1016/S0003-9861(02)00273-4
- 24. N. Hamajima, K. Matsuo, H. Iwata, M. Shinoda, Y. Yamamura, T. Kato, S. Hatooka, T. Mitsudomi, M. Suyama, Y. Kagami, M. Ogura, M. Ando, Y. Sugimura and K. Tajima, NAD(P)H: quinone oxidoreductase 1 (NQO1) C609T polymorphism and the risk of eight cancers for Japanese, Int. J. Clin. Oncol.7 (2002) 103–108; https://doi.org/10.1007/s10147020001310.1007/s10147020001312018106
- 25. H. J. Menzel, J. Sarmanova, P. Soucek, R. Berberich, K. Grunewald, M. Haun and H. G. Kraft, Association of NQO1 polymorphism with spontaneous breast cancer in two independent populations, Br. J. Cancer90 (2004) 1989–1994; https://doi.org/10.1038/sj.bjc.660177910.1038/sj.bjc.6601779241028215138483
- 26. A. T. Dinkova-Kostova and P. Talalay, NAD(P)H:quinone acceptor oxidoreductase 1 (NQO1), a multifunctional antioxidant enzyme and exceptionally versatile cytoprotector, Arch. Biochem. Biophys.501 (2010) 116–123; https://doi.org/10.1016/j.abb.2010.03.01910.1016/j.abb.2010.03.019293003820361926
- 27. G. Asher, P. Tsvetkov, C. Kahana and Y. Shaul, A mechanism of ubiquitin-independent proteasomal degradation of the tumor suppressors p53 and p73, Genes Dev.19 (2005) 316–321; https://doi.org/10.1101/gad.31990510.1101/gad.31990554650915687255
- 28. G. Asher, Z. Bercovich, P. Tsvetkov, Y. Shaul and C. Kahana, 20S proteasomal degradation of ornithine decarboxylase is regulated by NQO1, Mol. Cell.17 (2005) 645–655; https://doi.org/10.1016/j.molcel.2005.01.02010.1016/j.molcel.2005.01.02015749015
- 29. K. Mikami, M. Naito, T. Ishiguro, H. Yano, A. Tomida, T. Yamada, N. Tanaka, T. Shirakusa and T. Tsuruo, Immunological quantitation of DT-diaphorase in carcinoma cell lines and clinical colon cancers: advanced tumors express greater levels of DT-diaphorase, Jpn. J. Cancer Res.89 (1998) 910–915; https://doi.org/10.1111/j.1349-7006.1998.tb00648.x10.1111/j.1349-7006.1998.tb00648.x59219499818026
- 30. O. J. Achadu and N. Revaprasadu, Tannic acid-derivatized graphitic carbon nitride quantum dots as an “on-off-on” fluorescent nanoprobe for ascorbic acid via copper(II) mediation, Mikrochim. Acta186 (2019) 87; https://doi.org/10.1007/s00604-018-3203-x10.1007/s00604-018-3203-x30631929
- 31. S. Karakurt and O. Adali, Tannic acid inhibits proliferation, migration, invasion of prostate cancer and modulates drug metabolizing and antioxidant enzymes, Anticancer Agents Med. Chem. 16 (2016) 781–789; https://doi.org/10.2174/187152061666615111111580910.2174/187152061666615111111580926555610
- 32. S. Karakurt, G. Abuşoğlu and Z. C. Arituluk, Comparison of anticarcinogenic properties of Viburnum opulus and its active compound p-coumaric acid on human colorectal carcinoma, Turk. J. Biol. 44 (2020) 252–263; https://doi.org/10.3906/biy-2002-3010.3906/biy-2002-30758515733110363
- 33. R. E. Brown, K. L. Jarvis and K. J. Hyland, Protein measurement using bicinchoninic acid – elimination of interfering substances, Anal. Biochem. 180 (1989) 136–139; https://doi.org/10.1016/0003-2697(89)90101-210.1016/0003-2697(89)90101-2
- 34. P. K. Smith, R. I. Krohn, G. T. Hermanson, A. K. Mallia, F. H. Gartner, M. D. Provenzano, E. K. Fuji-moto, N. M. Goeke, B. J. Olson and D. C. Klenk, Measurement of protein using bicinchoninic acid, Anal. Biochem. 150 (1985) 76–85; https://doi.org/10.1016/0003-2697(85)90442-710.1016/0003-2697(85)90442-7
- 35. K. J. Livak and T. D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method, Methods25 (2001) 402–408; https://doi.org/10.1006/meth.2001.126210.1006/meth.2001.126211846609
- 36. H. P. S. Makkar and K. Becker, Effect of pH, temperature, and time on inactivation of tannins and possible implications in detannification studies, J. Agr. Food Chem. 44 (1996) 1291–1295; https://doi.org/10.1021/jf950628710.1021/jf9506287
- 37. L. C. Katwa, M. Ramakrishna and M. R. R. Rao, Spectrophotometric assay of immobilized tannase, J. Biosci. 3 (1981) 135–142; https://doi.org/10.1007/BF0270265610.1007/BF02702656
- 38. S. R. Vedula, A. Ravasio, C. T. Lim and B. Ladoux, Collective cell migration: a mechanistic perspective, Physiology (Bethesda)28 (2013) 370–379; https://doi.org/10.1152/physiol.00033.201310.1152/physiol.00033.201324186932
- 39. O. Ilina and P. Friedl, Mechanisms of collective cell migration at a glance, J. Cell Sci. 122 (2009) 3203–3208; https://doi.org/10.1242/jcs.03652510.1242/jcs.03652519726629
- 40. P. Vitorino and T. Meyer, Modular control of endothelial sheet migration, Genes Dev. 22 (2008) 3268–3281; https://doi.org/10.1101/gad.172580810.1101/gad.1725808260076719056882
- 41. D. A. Chapnick and X. Liu, Leader cell positioning drives wound-directed collective migration in TGFbeta-stimulated epithelial sheets, Mol. Biol. Cell25 (2014) 1586–1593; https://doi.org/10.1091/mbc.E14-01-069710.1091/mbc.e14-01-0697
- 42. X. Liu and X. Wu, Utilizing matrigel transwell invasion assay to detect and enumerate circulating tumor cells, Methods Mol. Biol. 1634 (2017) 277–282; https://doi.org/10.1007/978-1-4939-7144-2_2310.1007/978-1-4939-7144-2_2328819859
- 43. K. Soejima, N. Mimura, M. Hirashima, H. Maeda, T. Hamamoto, T. Nakagaki and C. Nozaki, A novel human metalloprotease synthesized in the liver and secreted into the blood: possibly, the von Willebrand factor-cleaving protease?, J. Biochem. 130 (2001) 475–480; https://doi.org/10.1093/oxford-journals.jbchem.a003009
- 44. S. Horibata, T. V. Vo, V. Subramanian, P. R. Thompson and S. A. Coonrod, Utilization of the soft agar colony formation assay to identify inhibitors of tumorigenicity in breast cancer cells, J. Vis. Exp. 99 (2015) e52727; https://doi.org/10.3791/5272710.3791/52727
- 45. S. Borowicz, M. Van Scoyk, S. Avasarala, M. K. Karuppusamy Rathinam, J. Tauler, R. K. Bikkavilli and R. A. Winn, The soft agar colony formation assay, J. Vis. Exp. 92 (2014) e51998; https://doi.org/10.3791/5199810.3791/51998
- 46. S. Elmore, Apoptosis: a review of programmed cell death, Toxicol Pathol. 35 (2007) 495–516; https://doi.org/10.1080/0192623070132033710.1080/01926230701320337
- 47. M. M. Metzstein, G. M. Stanfield and H. R. Horvitz, Genetics of programmed cell death in C. elegans: past, present and future, Trends Genet. 14 (1998) 410–416; https://doi.org/10.1016/s0168-9525(98)01573-x10.1016/S0168-9525(98)01573-X
- 48. T. Miyashita, S. Krajewski, M. Krajewska, H. G. Wang, H. K. Lin, D. A. Liebermann, B. Hoffman and J. C. Reed, Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo, Oncogene9 (1994) 1799–1805; https://doi.org/10.1016/0092-8674(95)90412-310.1016/0092-8674(95)90412-3
- 49. A. A. Roman-Rosales, E. Garcia-Villa, L. A. Herrera, P. Gariglio and J. Diaz-Chavez, Mutant p53 gain of function induces HER2 over-expression in cancer cells, BMC Cancer18 (2018) 709; https://doi.org/10.1186/s12885-018-4613-110.1186/s12885-018-4613-1602941129970031
- 50. H. Solomon, N. Dinowitz, I. S. Pateras, T. Cooks, Y. Shetzer, A. Molchadsky, M. Charni, S. Rabani, G. Koifman, O. Tarcic, Z. Porat, I. Kogan-Sakin, N. Goldfinger, M. Oren, C. C. Harris, V. G. Gorgoulis and V. Rotter, Mutant p53 gain of function underlies high expression levels of colorectal cancer stem cells markers, Oncogene37 (2018) 1669–1684; https://doi.org/10.1038/s41388-017-0060-810.1038/s41388-017-0060-8644859529343849
- 51. N. C. Synnott, M. R. Bauer, S. Madden, A. Murray, R. Klinger, N. O’Donovan, D. O’Connor, W. M. Gallagher, J. Crown, A. R. Fersht and M. J. Duffy, Mutant p53 as a therapeutic target for the treatment of triple-negative breast cancer: Preclinical investigation with the anti-p53 drug, PK11007, Cancer Lett. 414 (2018) 99–106; https://doi.org/10.1016/j.canlet.2017.09.05310.1016/j.canlet.2017.09.05329069577
- 52. H. Xiang, Y. Kinoshita, C. M. Knudson, S. J. Korsmeyer, P. A. Schwartzkroin and R. S. Morrison, Bax involvement in p53-mediated neuronal cell death, J. Neurosci. 18 (1998) 1363–1373; https://doi.org/10.1523/JNEUROSCI.18-04-01363.199810.1523/JNEUROSCI.18-04-01363.1998
- 53. J. H. Sun, Y. J. Wen, Y. Y. Zhou, Y. M. Jiang, Y. X. Chen, H. Z. Zhang, L. H. Guan, X. P. Yao, M. Huang and H. C. Bi, p53 attenuates acetaminophen-induced hepatotoxicity by regulating drug-metabolizing enzymes and transporter expression, Cell Death Dis. 9 (2018); https://doi.org/10.1038/s41419-018-0507-z10.1038/s41419-018-0507-z594579529748533
- 54. T. Maeda, C. Tanabe-Fujimura, Y. Fujita, C. Abe, Y. Nanakida, K. Zou, J. J. Liu, S. Y. Liu, T. Nakajima and H. Komano, NAD(P)H quinone oxidoreductase 1 inhibits the proteasomal degradation of homocysteine-induced endoplasmic reticulum protein, Biochem. Bioph. Res. Co. 473 (2016) 1276–1280; https://doi.org/10.1016/j.bbrc.2016.04.05710.1016/j.bbrc.2016.04.057
- 55. O. H. Rokah, O. Shpilberg and G. Granot, NAD(P)H quinone oxidoreductase protects TAp63 gamma from proteasomal degradation and regulates TAp63 gamma-dependent growth arrest, Plos One5 (2010); https://doi.org/10.1371/journal.pone.001140110.1371/journal.pone.0011401
- 56. M. J. Lamberti, N. B. Vittar, C. da Silva Fde, V. F. Ferreira and V. A. Rivarola, Synergistic enhancement of antitumor effect of beta-Lapachone by photodynamic induction of quinone oxidoreductase (NQO1), Phytomedicine20 (2013) 1007–1012; https://doi.org/10.1016/j.phymed.2013.04.01810.1016/j.phymed.2013.04.018
- 57. H. Z. Zhou, H. Q. Zeng, D. Yuan, J. H. Ren, S. T. Cheng, H. B. Yu, F. Ren, Q. Wang, Y. P. Qin, A. L. Huang and J. Chen, NQO1 potentiates apoptosis evasion and upregulates XIAP via inhibiting proteasome-mediated degradation SIRT6 in hepatocellular carcinoma, Cell Commun. Signal17 (2019) 168; https://doi.org/10.1186/s12964-019-0491-710.1186/s12964-019-0491-7
- 58. X. Zhang, K. Han, D.H. Yuan and C. Y. Meng, Overexpression of NAD(P)H: Quinone oxidoreductase 1 inhibits hepatocellular carcinoma cell proliferation and induced apoptosis by activating AMPK/PGC-1alpha pathway, DNA Cell Biol. 36 (2017) 256–263; https://doi.org/10.1089/dna.2016.358810.1089/dna.2016.3588
- 59. M. Hayashi, N. Matsumoto, S. Takenoshita-Nakaya, Y. Takeba, M. Watanabe, T. Kumai, M. Takagi, M. Tanaka, T. Otsubo and S. Kobayashi, Individual metabolic capacity evaluation of cytochrome P450 2C19 by protein and activity in the small intestinal mucosa of Japanese pancreatoduodenectomy patients, Biol. Pharm. Bull. 34 (2011) 71–76; https://doi.org/10.1248/bpb.34.7110.1248/bpb.34.71
- 60. S. Ohtsuki, O. Schaefer, H. Kawakami, T. Inoue, S. Liehner, A. Saito, N. Ishiguro, W. Kishimoto, E. Ludwig-Schwellinger, T. Ebner and T. Terasaki, Simultaneous absolute protein quantification of transporters, cytochromes P450, and UDP-glucuronosyltransferases as a novel approach for the characterization of individual human liver: comparison with mRNA levels and activities, Drug Metab. Dispos. 40 (2012) 83–92; https://doi.org/10.1124/dmd.111.04225910.1124/dmd.111.042259
- 61. H. Lin and K. S. Caroll, Introduction: Posttranslational protein modification, Chem. Rev. 118 (2018) 887–888; https://doi.org/10.1021/acs.chemrev.7b0075610.1021/acs.chemrev.7b00756
- 62. R. D. Traver, T. Horikoshi, K. D. Danenberg, T. H. W. Stadlbauer, P. V. Danenberg, D. Ross and N. W. Gibson, NAD(P)H-quinone oxidoreductase gene-expression in human colon-carcinoma cells: characterization of a mutation which modulates DT-diaphorase activity and mitomycin sensitivity, Cancer Res. 52 (1992) 797–802.
- 63. X. Zhang, K. Han, D. H. Yuan and C. Y. Meng, Overexpression of NAD(P)H: quinone oxidoreductase 1 inhibits hepatocellular carcinoma cell proliferation and induced apoptosis by activating AMPK/PGC-1alpha pathway, DNA Cell Biol. 36 (2017) 256–263; https://doi.org/10.1089/dna.2016.358810.1089/dna.2016.3588
- 64. D. Bergamaschi, M. Gasco, L. Hiller, A. Sullivan, N. Syed, G. Trigiante, I. Yulug, M. Merlano, G. Numico, A. Comino, M. Attard, O. Reelfs, B. Gusterson, A. K. Bell, V. Heath, M. Tavassoli, P. J. Farrell, P. Smith, X. Lu and T. Crook, p53 polymorphism influences response in cancer chemotherapy via modulation of p73-dependent apoptosis, Cancer Cell3 (2003) 387–402; https://doi.org/10.1016/s1535-6108(03)00079-510.1016/S1535-6108(03)00079-5