References
- 1. D. Glovaci, W. Fan and N. D. Wong, Epidemiology of diabetes mellitus and cardiovascular disease, Curr. Cardiol. Rep.21 (2019) Article ID 21 (8 pages); https://doi.org/10.1007/s11886-019-1107-y10.1007/s11886-019-1107-y
- 2. N. Cho, J. Shaw, S. Karuranga, Y. Huang, D. da Rocha Fernandes, W. Ohlrogge and B. Malanda, IDF diabetes atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045, Diabetes Res. Clin. Pract.138 (2018) 271–281; https://doi.org/10.1016/j.diabres.2018.02.02310.1016/j.diabres.2018.02.023
- 3. A. Chaudhury, C. Duvoor, V. S. R. Dendi, S. Kraleti, A. Chada, R. Ravilla, A. Marco, N. S. Shekhawat, M. T. Montales, K. Kuriakose, A. Sasapu, A. Beebe, N. Patil, C. K. Musham, G. P. Lohani and W. Mirza, Clinical review of antidiabetic drugs: Implications for type 2 diabetes mellitus management, Front. Endocrinol. (Lausanne) 8 (Suppl 1) (2017) Article ID 6 (12 pages); https://doi.org/10.3389/fendo.2017.0000610.3389/fendo.2017.00006
- 4. N. Sergeant, V. Vingtdeux, S. Eddarkaoui, M. Gay, C. Evrard, N. Le Fur and A. Farce, New piperazine multi-effect drugs prevent neurofibrillary degeneration and amyloid deposition, and preserve memory in animal models of Alzheimer’s disease, Neurobiol. Dis.129 (2019) 217–233; https://doi.org/10.1016/j.nbd.2019.03.02810.1016/j.nbd.2019.03.028
- 5. M. Taha, M. Irshad, S. Imran, S. Chigurupati, M. Selvaraj, F. Rahim and K. Khan, Synthesis of piperazine sulfonamide analogs as diabetic-II inhibitors and their molecular docking study, Eur. J. Med. Chem.141 (2017) 530–537; https://doi.org/10.1016/j.ejmech.2017.10.02810.1016/j.ejmech.2017.10.028
- 6. B. R. Rao, M. R. Katiki, K. Dileep, C. G. Kumar, G. N. Reddy, J. B. Nanubolu and M. S. R. Murty, Synthesis and biological evaluation of benzothiazole-piperazine-sulfonamide conjugates and their antibacterial and antiacetylcholinesterase activity, Lett. Org. Chem.16 (2019) 723–734; https://doi.org/10.2174/157017861566618111309453910.2174/1570178615666181113094539
- 7. D. C. Martyn, J. F. Cortese, E. Tyndall, J. Dick, R. Mazitschek, B. Munoz and J. Clardy, Antiplasmo-dial activity of piperazine sulfonamides, Bioorg. Med. Chem. Lett.20 (2010) 218–221; https://doi.org/10.1016/j.bmcl.2009.10.13010.1016/j.bmcl.2009.10.130
- 8. C. J. Bungard, P. D. Williams, J. Schulz, C. M. Wiscount, M. K. Holloway, H. M. Loughran and X. J. Chu, Design and synthesis of piperazine sulfonamide cores leading to highly potent HIV-1 protease inhibitors, ACS Med. Chem. Lett.8 (2017) 1292–1297; https://doi.org/10.1021%2Facsmedchemlett.7b0038610.1021/acsmedchemlett.7b00386
- 9. R. Thoma, B. Löffler, M. Stihle, W. Huber, A. Ruf and M. Hennig, Structural basis of proline-specific exopeptidase activity as observed in human dipeptidyl peptidase-IV, Structure11 (2003) 947–959; https://doi.org/10.1016/s0969-2126(03)00160-610.1016/S0969-2126(03)00160-6
- 10. C. Deacon, Physiology and pharmacology of DPP-4 in glucose homeostasis and the treatment of type 2 diabetes, Front. Endocrinol. (Lausanne) 10 (2019) Article ID 80 (14 pages); https://doi.org/10.3389/fendo.2019.0008010.3389/fendo.2019.00080638423730828317
- 11. S. Q. Pantaleão, E. A. Philot, P. T. de Resende-Lara, A. N. Lima, D. Perahia, M. Atanassova Miteva, A. L. Scott and K. M. Honorio, structural dynamics of dpp-4 and its influence on the projection of bioactive ligands, Molecules23 (2018) Article ID 490 (10 pages); https://doi.org/10.3390/molecules2302049010.3390/molecules23020490601781929473857
- 12. O. Power-Grant, A. B. Nongonierma, P. Jakeman and R. J. FitzGerald, Food protein hydrolysates as a source of dipeptidyl peptidase IV inhibitory peptides for the management of type 2 diabetes, Proc. Nutr. Soc.73 (2014) 34–46; https://doi.org/10.1017/S002966511300360110.1017/S002966511300360124131508
- 13. M. Sano, Mechanism by which dipeptidyl peptidase-4 inhibitors increase the risk of heart failure and possible differences in heart failure risk, J. Cardiol.73 (2018) 28–32; https://doi.org/10.1016/j.jjcc.2018.07.00410.1016/j.jjcc.2018.07.00430318179
- 14. Y. Nakamaru, F. Akahoshi, H. Iijima, N. Hisanaga and T. Kume, Tissue distribution of teneligliptin in rats and comparisons with data reported for other dipeptidyl peptidase-4 inhibitors, Biopharm. Drug Dispos.37 (2016) 142–155; https://doi.org/10.1002%2Fbdd.200310.1002/bdd.2003507424726749565
- 15. R. N. Kushwaha, W. Haq and S. B. Katti, Sixteen-years of clinically relevant dipeptidyl peptidase-IV (DPP-IV) inhibitors for treatment of type-2 diabetes: a perspective, Curr. Med. Chem.21 (2014) 4013–4045; https://doi.org/10.2174/092986732166614091514330910.2174/092986732166614091514330925245373
- 16. V. Gupta and S. Kalra, Choosing a gliptin, Indian J. Endocrinol. Metab15 (2011) 298–308; https://doi.org/10.4103%2F2230-8210.8558310.4103/2230-8210.85583
- 17. J. Shubrook, R. Colucci, A. Guo and F. Schwartz, Saxagliptin: A selective DPP-4 inhibitor for the treatment of type 2 diabetes mellitus, Clin. Med. Insights Endocrinol. Diabetes4 (2011) 1–12; https://doi.org/10.4137/CMED.S511410.4137/CMED.S5114341154322879789
- 18. T. Kadowaki and K. Kondo, Efficacy and safety of teneligliptin in combination with pioglitazone in Japanese patients with type 2 diabetes mellitus, J. Diabetes Investig.4 (2013) 576–584; https://doi.org/10.1111/jdi.1209210.1111/jdi.12092402025324843712
- 19. T. Kadowaki and K. Kondo, Efficacy and safety of teneligliptin added to glimepiride in Japanese patients with type 2 diabetes mellitus: a randomized, double-blind, placebo-controlled study with an open-label, long-term extension, Diabetes Obes. Metab.16 (2014) 418–425; https://doi.org/10.1111/dom.1223510.1111/dom.1223524205974
- 20. C. F. Deacon, Dipeptidyl peptidase-4 inhibitors in the treatment of type 2 diabetes: a comparative review, Diabetes Obes. Metab.13 (2011) 7–18; https://doi.org/10.1111/j.1463-1326.2010.01306.x10.1111/j.1463-1326.2010.01306.x21114598
- 21. R. Abu Khalaf, G. Abu Sheikha, M. Al-Sha’er and M. Taha, Design, synthesis and biological evaluation of N4-sulfonamido-succinamic, phthalamic, acrylic and benzoyl acetic acid derivatives as potential DPP IV inhibitors, Open Med. Chem. J.7 (2013) 39–48; https://doi.org/10.2174/187410450130701003910.2174/1874104501307010039386662424358058
- 22. R. Abu Khalaf, Z. Jarekji, T. Al-Qirim, D. Sabbah and G. Shattat, Pharmacophore modeling and molecular docking studies of acridines as potential DPP-IV inhibitors, Can. J. Chem.93 (2015) 721‒729; https://doi.org/10.1139/cjc-2015-003910.1139/cjc-2015-0039
- 23. R. Abu Khalaf, D. Sabbah, E. Al-Shalabi, I. Al-Sheikh, G. Albadawi and G. Abu Sheikha, Synthesis, structural characterization and docking studies of sulfamoyl-phenyl acid esters as dipeptidyl peptidase-IV inhibitors, Curr. Comput. Aid. Drug Des.14 (2018) 142–151; https://doi.org/10.2174/157340991466618030816401310.2174/157340991466618030816401329521244
- 24. R. A. Khalaf, D. Masalha and D. Sabbah, DPP-IV inhibitory phenanthridines: Ligand, structure-based design and synthesis, Curr. Comput. Aid. Drug Des.16 (2020) 295–307; https://doi.org/10.2174/157340991566618121111474310.2174/157340991566618121111474330526469
- 25. J. M. Sutton, D. E. Clark, S. J. Dunsdon, G. Fenton, A. Fillmore, N. V. Harris, C. Higgs, C. A. Hurley, S. L. Krintel, R. E. MacKenzie, A. Duttaroy, E. Gangl, W. Maniara, R. Sedrani, K. Namoto, N. Oster-mann, B. Gerhartz, F. Sirockin, J. Trappe, U. Hassiepen and D. K. Baeschlin, Novel heterocyclic DPP-4 inhibitors for the treatment of type 2 diabetes, Bioorg. Med. Chem. Lett.22 (2012) 1464–1468; https://doi.org/10.1016/j.bmcl.2011.11.05410.1016/j.bmcl.2011.11.05422177783
- 26. Protein Preparation Wizard, Maestro, Macromodel, QPLD-dock and Pymol, Schrödinger, LLC, Portland (OR), 2016; https://www.schrodinger.com/, last access July, 2020
- 27. M. Smith and C. Pollard, New compounds. Derivatives of piperazine. XIX. Reactions with aryl sulfonyl chlorides and aryl sulfonic acids, J. Am. Chem. Soc.63 (1941) 630–631; https://pubs.acs.org/doi/abs/10.1021/ja01847a07610.1021/ja01847a076
- 28. M. B. Boxer, J. Jiang, M. G. Vander Heiden, M. Shen, A. P. Skoumbourdis, N. Southall, H. Veith, W. Leister, C. P. Austin, H. Won Park, J. Inglese, L. C. Cantley, D. S. Auld and C. J. Thomas, Evaluation of substituted N, N′-diarylsulfonamides as activators of the tumor cell specific M2 isoform of pyruvate kinase, J. Med. Chem.53 (2010) 1048–1055; https://pubs.acs.org/doi/10.1021/jm901577g10.1021/jm901577g281880420017496
- 29. R. A. Friesner, J. L. Banks, R. B. Murphy, T. A. Halgren, J. J. Klicic, D. T. Mainz, M. P. Repasky, E. H. Knoll, M. Shelley, J. K. Perry, D. E. Shaw, P. Francis and P. S. Shenkin, Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy, J. Med. Chem.47 (2004) 1739–1749; https://doi.org/10.1021/jm030643010.1021/jm030643015027865
- 30. R. A. Friesner, R. B. Murphy, M. P. Repasky, L. L. Frye, J. R. Greenwood, T. A. Halgren, P. C. Sanscha-grin and D. T. Mainz, Extra precision glide: Docking and scoring incorporating a model of hydro-phobic enclosure for protein-ligand complexes, J. Med. Chem.49 (2006) 6177–6196; https://doi.org/10.1021/jm051256o10.1021/jm051256o17034125