Have a personal or library account? Click to login
Piperazine sulfonamides as DPP-IV inhibitors: Synthesis, induced-fit docking and in vitro biological evaluation Cover

Piperazine sulfonamides as DPP-IV inhibitors: Synthesis, induced-fit docking and in vitro biological evaluation

Open Access
|Apr 2021

References

  1. 1. D. Glovaci, W. Fan and N. D. Wong, Epidemiology of diabetes mellitus and cardiovascular disease, Curr. Cardiol. Rep.21 (2019) Article ID 21 (8 pages); https://doi.org/10.1007/s11886-019-1107-y10.1007/s11886-019-1107-y
  2. 2. N. Cho, J. Shaw, S. Karuranga, Y. Huang, D. da Rocha Fernandes, W. Ohlrogge and B. Malanda, IDF diabetes atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045, Diabetes Res. Clin. Pract.138 (2018) 271–281; https://doi.org/10.1016/j.diabres.2018.02.02310.1016/j.diabres.2018.02.023
  3. 3. A. Chaudhury, C. Duvoor, V. S. R. Dendi, S. Kraleti, A. Chada, R. Ravilla, A. Marco, N. S. Shekhawat, M. T. Montales, K. Kuriakose, A. Sasapu, A. Beebe, N. Patil, C. K. Musham, G. P. Lohani and W. Mirza, Clinical review of antidiabetic drugs: Implications for type 2 diabetes mellitus management, Front. Endocrinol. (Lausanne) 8 (Suppl 1) (2017) Article ID 6 (12 pages); https://doi.org/10.3389/fendo.2017.0000610.3389/fendo.2017.00006
  4. 4. N. Sergeant, V. Vingtdeux, S. Eddarkaoui, M. Gay, C. Evrard, N. Le Fur and A. Farce, New piperazine multi-effect drugs prevent neurofibrillary degeneration and amyloid deposition, and preserve memory in animal models of Alzheimer’s disease, Neurobiol. Dis.129 (2019) 217–233; https://doi.org/10.1016/j.nbd.2019.03.02810.1016/j.nbd.2019.03.028
  5. 5. M. Taha, M. Irshad, S. Imran, S. Chigurupati, M. Selvaraj, F. Rahim and K. Khan, Synthesis of piperazine sulfonamide analogs as diabetic-II inhibitors and their molecular docking study, Eur. J. Med. Chem.141 (2017) 530–537; https://doi.org/10.1016/j.ejmech.2017.10.02810.1016/j.ejmech.2017.10.028
  6. 6. B. R. Rao, M. R. Katiki, K. Dileep, C. G. Kumar, G. N. Reddy, J. B. Nanubolu and M. S. R. Murty, Synthesis and biological evaluation of benzothiazole-piperazine-sulfonamide conjugates and their antibacterial and antiacetylcholinesterase activity, Lett. Org. Chem.16 (2019) 723–734; https://doi.org/10.2174/157017861566618111309453910.2174/1570178615666181113094539
  7. 7. D. C. Martyn, J. F. Cortese, E. Tyndall, J. Dick, R. Mazitschek, B. Munoz and J. Clardy, Antiplasmo-dial activity of piperazine sulfonamides, Bioorg. Med. Chem. Lett.20 (2010) 218–221; https://doi.org/10.1016/j.bmcl.2009.10.13010.1016/j.bmcl.2009.10.130
  8. 8. C. J. Bungard, P. D. Williams, J. Schulz, C. M. Wiscount, M. K. Holloway, H. M. Loughran and X. J. Chu, Design and synthesis of piperazine sulfonamide cores leading to highly potent HIV-1 protease inhibitors, ACS Med. Chem. Lett.8 (2017) 1292–1297; https://doi.org/10.1021%2Facsmedchemlett.7b0038610.1021/acsmedchemlett.7b00386
  9. 9. R. Thoma, B. Löffler, M. Stihle, W. Huber, A. Ruf and M. Hennig, Structural basis of proline-specific exopeptidase activity as observed in human dipeptidyl peptidase-IV, Structure11 (2003) 947–959; https://doi.org/10.1016/s0969-2126(03)00160-610.1016/S0969-2126(03)00160-6
  10. 10. C. Deacon, Physiology and pharmacology of DPP-4 in glucose homeostasis and the treatment of type 2 diabetes, Front. Endocrinol. (Lausanne) 10 (2019) Article ID 80 (14 pages); https://doi.org/10.3389/fendo.2019.0008010.3389/fendo.2019.00080638423730828317
  11. 11. S. Q. Pantaleão, E. A. Philot, P. T. de Resende-Lara, A. N. Lima, D. Perahia, M. Atanassova Miteva, A. L. Scott and K. M. Honorio, structural dynamics of dpp-4 and its influence on the projection of bioactive ligands, Molecules23 (2018) Article ID 490 (10 pages); https://doi.org/10.3390/molecules2302049010.3390/molecules23020490601781929473857
  12. 12. O. Power-Grant, A. B. Nongonierma, P. Jakeman and R. J. FitzGerald, Food protein hydrolysates as a source of dipeptidyl peptidase IV inhibitory peptides for the management of type 2 diabetes, Proc. Nutr. Soc.73 (2014) 34–46; https://doi.org/10.1017/S002966511300360110.1017/S002966511300360124131508
  13. 13. M. Sano, Mechanism by which dipeptidyl peptidase-4 inhibitors increase the risk of heart failure and possible differences in heart failure risk, J. Cardiol.73 (2018) 28–32; https://doi.org/10.1016/j.jjcc.2018.07.00410.1016/j.jjcc.2018.07.00430318179
  14. 14. Y. Nakamaru, F. Akahoshi, H. Iijima, N. Hisanaga and T. Kume, Tissue distribution of teneligliptin in rats and comparisons with data reported for other dipeptidyl peptidase-4 inhibitors, Biopharm. Drug Dispos.37 (2016) 142–155; https://doi.org/10.1002%2Fbdd.200310.1002/bdd.2003507424726749565
  15. 15. R. N. Kushwaha, W. Haq and S. B. Katti, Sixteen-years of clinically relevant dipeptidyl peptidase-IV (DPP-IV) inhibitors for treatment of type-2 diabetes: a perspective, Curr. Med. Chem.21 (2014) 4013–4045; https://doi.org/10.2174/092986732166614091514330910.2174/092986732166614091514330925245373
  16. 16. V. Gupta and S. Kalra, Choosing a gliptin, Indian J. Endocrinol. Metab15 (2011) 298–308; https://doi.org/10.4103%2F2230-8210.8558310.4103/2230-8210.85583
  17. 17. J. Shubrook, R. Colucci, A. Guo and F. Schwartz, Saxagliptin: A selective DPP-4 inhibitor for the treatment of type 2 diabetes mellitus, Clin. Med. Insights Endocrinol. Diabetes4 (2011) 1–12; https://doi.org/10.4137/CMED.S511410.4137/CMED.S5114341154322879789
  18. 18. T. Kadowaki and K. Kondo, Efficacy and safety of teneligliptin in combination with pioglitazone in Japanese patients with type 2 diabetes mellitus, J. Diabetes Investig.4 (2013) 576–584; https://doi.org/10.1111/jdi.1209210.1111/jdi.12092402025324843712
  19. 19. T. Kadowaki and K. Kondo, Efficacy and safety of teneligliptin added to glimepiride in Japanese patients with type 2 diabetes mellitus: a randomized, double-blind, placebo-controlled study with an open-label, long-term extension, Diabetes Obes. Metab.16 (2014) 418–425; https://doi.org/10.1111/dom.1223510.1111/dom.1223524205974
  20. 20. C. F. Deacon, Dipeptidyl peptidase-4 inhibitors in the treatment of type 2 diabetes: a comparative review, Diabetes Obes. Metab.13 (2011) 7–18; https://doi.org/10.1111/j.1463-1326.2010.01306.x10.1111/j.1463-1326.2010.01306.x21114598
  21. 21. R. Abu Khalaf, G. Abu Sheikha, M. Al-Sha’er and M. Taha, Design, synthesis and biological evaluation of N4-sulfonamido-succinamic, phthalamic, acrylic and benzoyl acetic acid derivatives as potential DPP IV inhibitors, Open Med. Chem. J.7 (2013) 39–48; https://doi.org/10.2174/187410450130701003910.2174/1874104501307010039386662424358058
  22. 22. R. Abu Khalaf, Z. Jarekji, T. Al-Qirim, D. Sabbah and G. Shattat, Pharmacophore modeling and molecular docking studies of acridines as potential DPP-IV inhibitors, Can. J. Chem.93 (2015) 721‒729; https://doi.org/10.1139/cjc-2015-003910.1139/cjc-2015-0039
  23. 23. R. Abu Khalaf, D. Sabbah, E. Al-Shalabi, I. Al-Sheikh, G. Albadawi and G. Abu Sheikha, Synthesis, structural characterization and docking studies of sulfamoyl-phenyl acid esters as dipeptidyl peptidase-IV inhibitors, Curr. Comput. Aid. Drug Des.14 (2018) 142–151; https://doi.org/10.2174/157340991466618030816401310.2174/157340991466618030816401329521244
  24. 24. R. A. Khalaf, D. Masalha and D. Sabbah, DPP-IV inhibitory phenanthridines: Ligand, structure-based design and synthesis, Curr. Comput. Aid. Drug Des.16 (2020) 295–307; https://doi.org/10.2174/157340991566618121111474310.2174/157340991566618121111474330526469
  25. 25. J. M. Sutton, D. E. Clark, S. J. Dunsdon, G. Fenton, A. Fillmore, N. V. Harris, C. Higgs, C. A. Hurley, S. L. Krintel, R. E. MacKenzie, A. Duttaroy, E. Gangl, W. Maniara, R. Sedrani, K. Namoto, N. Oster-mann, B. Gerhartz, F. Sirockin, J. Trappe, U. Hassiepen and D. K. Baeschlin, Novel heterocyclic DPP-4 inhibitors for the treatment of type 2 diabetes, Bioorg. Med. Chem. Lett.22 (2012) 1464–1468; https://doi.org/10.1016/j.bmcl.2011.11.05410.1016/j.bmcl.2011.11.05422177783
  26. 26. Protein Preparation Wizard, Maestro, Macromodel, QPLD-dock and Pymol, Schrödinger, LLC, Portland (OR), 2016; https://www.schrodinger.com/, last access July, 2020
  27. 27. M. Smith and C. Pollard, New compounds. Derivatives of piperazine. XIX. Reactions with aryl sulfonyl chlorides and aryl sulfonic acids, J. Am. Chem. Soc.63 (1941) 630–631; https://pubs.acs.org/doi/abs/10.1021/ja01847a07610.1021/ja01847a076
  28. 28. M. B. Boxer, J. Jiang, M. G. Vander Heiden, M. Shen, A. P. Skoumbourdis, N. Southall, H. Veith, W. Leister, C. P. Austin, H. Won Park, J. Inglese, L. C. Cantley, D. S. Auld and C. J. Thomas, Evaluation of substituted N, N′-diarylsulfonamides as activators of the tumor cell specific M2 isoform of pyruvate kinase, J. Med. Chem.53 (2010) 1048–1055; https://pubs.acs.org/doi/10.1021/jm901577g10.1021/jm901577g281880420017496
  29. 29. R. A. Friesner, J. L. Banks, R. B. Murphy, T. A. Halgren, J. J. Klicic, D. T. Mainz, M. P. Repasky, E. H. Knoll, M. Shelley, J. K. Perry, D. E. Shaw, P. Francis and P. S. Shenkin, Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy, J. Med. Chem.47 (2004) 1739–1749; https://doi.org/10.1021/jm030643010.1021/jm030643015027865
  30. 30. R. A. Friesner, R. B. Murphy, M. P. Repasky, L. L. Frye, J. R. Greenwood, T. A. Halgren, P. C. Sanscha-grin and D. T. Mainz, Extra precision glide: Docking and scoring incorporating a model of hydro-phobic enclosure for protein-ligand complexes, J. Med. Chem.49 (2006) 6177–6196; https://doi.org/10.1021/jm051256o10.1021/jm051256o17034125
DOI: https://doi.org/10.2478/acph-2021-0034 | Journal eISSN: 1846-9558 | Journal ISSN: 1330-0075
Language: English
Page range: 631 - 643
Accepted on: Oct 20, 2020
Published on: Apr 3, 2021
Published by: Croatian Pharmaceutical Society
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year
Related subjects:

© 2021 Reema Abu Khalaf, Ebtisam Alwarafi, Dima Sabbah, published by Croatian Pharmaceutical Society
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.