Have a personal or library account? Click to login
Esters of quinoxaline-7-carboxylate-1,4-di-N-oxide as Trichomonas vaginalis triosephosphate isomerase inhibitors Cover

Esters of quinoxaline-7-carboxylate-1,4-di-N-oxide as Trichomonas vaginalis triosephosphate isomerase inhibitors

Open Access
|Dec 2020

References

  1. 1. D. Leitsch, Drug resistance in the microaerophilic parasite Giardia lamblia, Curr. Trop. Med. Rep.2 (2015) 128–135; https://doi.org/10.1007/s40475-015-0051-110.1007/s40475-015-0051-1452369426258002
  2. 2. B. R. Ansell, M. J. McConville, S. Y. Ma’ayeh, M. J. Dagley, R. B. Gasser, S. G. Svärd and A. R. Jex, Drug resistance in Giardia duodenalis, Biotechnol. Adv.33 (2015) 888–901; https://doi.org/10.1016/j.biotechadv.2015.04.00910.1016/j.biotechadv.2015.04.00925922317
  3. 3. C. B. Menezes, A. P. Frasson and T. Tasca, Trichomoniasis – are we giving the deserved attention to the most common non-viral sexually transmitted disease worldwide?, Microb. Cell3 (2016) 404–419; https://doi.org/10.15698/mic2016.09.52610.15698/mic2016.09.526535456828357378
  4. 4. D. Leitsch, Recent advances in the Trichomonas vaginalis field, F1000Res.5 (2016) Article ID 162 (7 pages); https://doi.org/10.12688/f1000research.7594.110.12688/f1000research.7594.1475539626918168
  5. 5. P. Kissinger, Trichomonas vaginalis: a review of epidemiologic, clinical and treatment issues, BMC Infect. Dis.15 (2015) Article ID 307 (8 pages); https://doi.org/10.1186/s12879-015-1055-010.1186/s12879-015-1055-0452574926242185
  6. 6. P. Upcroft and J. A. Upcroft, Drug targets and mechanisms of resistance in the anaerobic protozoa, Clin. Microbiol. Rev.14 (2001) 150–164; https://doi.org/10.1128/CMR.14.1.150-164.200110.1128/CMR.14.1.150-164.20018896711148007
  7. 7. P. A. Cano, A. Islas-Jácome, J. González-Marrero, L. Yépez-Mulia, F. Calzada and R. Gámez-Montaño, Synthesis of 3-tetrazolylmethyl-4H-chromen-4-ones via Ugi-azide and biological evaluation against Entamoeba histolytica, Giardia lamblia and Trichomona vaginalis, Bioorg. Med. Chem.22 (2014) 1370–1376; https://doi.org/10.1016/j.bmc.2013.12.06910.1016/j.bmc.2013.12.06924468633
  8. 8. S. Chaturvedi, M. Y. Malik, M. Rashid, S. Singh, V. Tiwari, P. Gupta, S. Shukla, S. Singh and M. Wahajuddin, Mechanistic exploration of quercetin against metronidazole induced neurotoxicity in rats: possible role of nitric oxide isoforms and inflammatory cytokines, Neurotoxicology79 (2020) 1–10; https://doi.org/10.1016/j.neuro.2020.03.00210.1016/j.neuro.2020.03.00232151614
  9. 9. J. Jampilek, Recent advances in design of potential quinoxaline anti-infectives, Curr. Med. Chem.21 (2014) 4347–4373; https://doi.org/10.2174/092986732166614101119482510.2174/092986732166614101119482525312209
  10. 10. I. Balderas-Renteria, P. Gonzalez-Barranco, A. Garcia, B. K. Banik and G. Rivera, Anticancer drug design using scaffolds of β-lactams, sulfonamides, quinoline, quinoxaline and natural products. Drugs advances in clinical trials, Curr. Med. Chem.19 (2012) 4377–4398; https://doi.org/10.2174/09298671280325159310.2174/09298671280325159322709002
  11. 11. N. B. Patel, J. N. Patel, A. C. Purohit, V. M. Patel, D. P. Rajani, R. Moo-Puc, J. C. Lopez-Cedillo, B. Nogueda-Torres and G. Rivera, In vitro and in vivo assessment of newer quinoxaline-oxadiazole hybrids as antimicrobial and antiprotozoal agents, Int. J. Antimicrob. Agents50 (2017) 413–418; https://doi.org/10.1016/j.ijantimicag.2017.04.01610.1016/j.ijantimicag.2017.04.01628687457
  12. 12. G. Cheng, W. Sa, C. Cao, L. Guo, H. Hao, Z. Liu, X. Wang and Z. Yuan, Quinoxaline 1,4-di-N-oxides: Biological activities and mechanisms of actions, Front. Pharmacol.7 (2016) Article ID 64 (21 pages); https://doi.org/10.3389/fphar.2016.0006410.3389/fphar.2016.00064480018627047380
  13. 13. R. El Aissi, J. Liu, S. Besse, D. Canitrot, O. Chavignon, J. M. Chezal, E. Miot-Noirault and E. Moreau, Synthesis and biological evaluation of new quinoxaline derivatives of ICF01012 as melanoma-targeting probes, ACS Med. Chem. Lett.5 (2014) 468–473; https://doi.org/10.1021/ml400468x10.1021/ml400468x402760924900863
  14. 14. J. C. Villalobos-Rocha, L. Sánchez-Torres, B. Nogueda-Torres, A. Segura-Cabrera, C. A. García-Pérez, V. Bocanegra-García, I. Palos, A. Monge and G. Rivera, Anti-Trypanosoma cruzi and anti-leishmanial activity by quinoxaline-7-carboxylate 1,4-di-N-oxide derivatives, Parasitol. Res.113 (2014) 2027–2035; https://doi.org/10.1007/s00436-014-3850-810.1007/s00436-014-3850-824691716
  15. 15. K. F. Chacón-Vargas, S. Andrade-Ochoa, B. Nogueda-Torres, D. C. Juárez-Ramírez, E. E. Lara-Ramírez, R. Mondragón-Flores, A. Monge and G. Rivera, L. E. Sánchez-Torres, Isopropyl quinoxaline-7-carboxylate 1,4-di-N-oxide derivatives induce regulated necrosis-like cell death on Leish-mania (Leishmania) mexicana, Parasitol. Res.117 (2018) 45–58; https://doi.org/10.1007/s00436-017-5635-310.1007/s00436-017-5635-329159705
  16. 16. M. Quiliano, A. Pabón, G. Ramirez-Calderon, C. Barea, E. Deharo, S. Galiano and I. Aldana, New hydrazine and hydrazide quinoxaline 1,4-di-N-oxide derivatives: In silico ADMET, antiplasmo-dial and antileishmanial activity. Bioorg. Med. Chem. Lett.27 (2017) 1820–1825; https://doi.org/10.1016/j.bmcl.2017.02.04910.1016/j.bmcl.2017.02.04928291694
  17. 17. B. E. Duque-Montaño, L. C. Gómez-Caro, M. Sanchez-Sanchez, A. Monge, E. Hernández-Baltazar, G. Rivera and O. Torres-Angeles, Synthesis and in vitro evaluation of new ethyl and methyl quinoxaline-7-carboxylate 1,4-di-N-oxide against Entamoeba histolytica, Bioorg. Med. Chem.21 (2013) 4550–4558; https://doi.org/10.1016/j.bmc.2013.05.03610.1016/j.bmc.2013.05.03623787289
  18. 18. L. C. Gómez-Caro, M. Sánchez-Sánchez, V. Bocanegra-García, A. Monge and G. Rivera, Synthesis of quinoxaline 1,4-di-N-oxide derivatives on solid support using room temperature and microwave-assisted solvent-free procedures, Quim. Nova34 (2011) 1147–1151; https://doi.org/10.1590/S0100-4042201100070000810.1590/S0100-40422011000700008
  19. 19. E. Hernández-Núñez, H. Tlahuext, R. Moo-Puc, H. Torres-Gómez, R. Reyes-Martínez, R Cedillo-Rivera, C. Nava-Zuazo and G. Navarrete-Vazquez, Synthesis and in vitro trichomonicidal, giardicidal and amebicidal activity of N-acetamide(sulfonamide)-2-methyl-4-nitro-1H-imidazoles, Eur. J. Med. Chem.44 (2009) 2975–2984; https://doi.org/10.1016/j.ejmech.2009.01.00510.1016/j.ejmech.2009.01.00519208443
  20. 20. B. R. Brooks, C. L. Brooks, A. D. Mackerell, L. Nilsson, R. J. Petrella, B. Roux, Y. Won, G. Archontis, C. Bartels, S. Boresch, A. Caflisch, L. Caves, Q. Cui, A. R. Dinner, M. Feig, S. Fischer, J. Gao, M. Hodoscek, W. Im, K. Kuczera, T. Lazaridis, J. Ma, V. Ovchinnikov, E. Paci, R. W. Pastor, C. B. Post, J. Z. Pu, M. Schaefer, B. Tidor, R. M. Venable, H. L. Woodcock, X. Wu, W. Yang, D. M. York and M. Karplus, CHARMM: The biomolecular simulation program, J. Comput. Chem.30 (2009) 1545–1614; https://doi.org/10.1002/jcc.2128710.1002/jcc.21287281066119444816
  21. 21. P. R. Gerber and K. Müller, MAB, a generally applicable molecular force field for structure modelling in medicinal chemistry, J. Comput. Aided Mol. Des.9 (1995) 251–268; https://doi.org/10.1007/bf0012445610.1007/BF00124456
  22. 22. C. A. Del Carpio, Y. Takahashi and S.-i. Sasaki, A new approach to the automatic identification of candidates for ligand receptor sites in proteins: (I) Search for pocket regions, J. Mol. Graph.11 (1993) 23–29; https://doi.org/10.1016/0263-7855(93)85003-9
  23. 23. A. Miranker and M. Karplus, Functionality maps of binding sites: A multiple copy simultaneous search method, Proteins: Struct. Funct. Genet.11 (1991) 29–34; https://doi.org/10.1002/prot.3401101010.1002/prot.340110104
  24. 24. S. Thangapandian, S. John, Y. Lee, S. Kim and K. W. Lee, Dynamic structure-based pharmacophore model development: A new and effective addition in the histone deacetylase 8 (HDAC8) inhibitor discovery, Int. J. Mol. Sci.12 (2011) 9440–9462; https://doi.org/10.3390/ijms1212944010.3390/ijms12129440
  25. 25. A. Wadood, M. Ghufran, S. F. Hassan, H. Khan, S. S. Azam and U. Rashid, In silico identification of promiscuous scaffolds as potential inhibitors of 1-deoxy-D-xylulose 5-phosphate reductoisom-erase for treatment of Falciparum malaria, Pharm. Biol.55 (2017) 19–32; https://doi.org/10.1080/13880209.2016.122577810.1080/13880209.2016.1225778
  26. 26. A. M. Clark and P. Labute, 2D depiction of protein–ligand complexes, J. Chem. Inf. Model. 47 (2007) 1933–1944; https://doi.org/10.1021/ci700147310.1021/ci7001473
  27. 27. S. Lara-González, P. Estrella, C. Portillo, M. E. Cruces, P. Jiménez-Sandoval, J. Fattori, A. C. Migliorini-Figueira, M. López-Hidalgo, C. Díaz-Quezada, M. López-Castillo, C. H. Trasviña-Arenas, E. Sánchez-Sandoval, A. Gómez-Puyou, J. Ortega-López, R. Arroyo, C. G. Benítez-Cardoza and L. G. Brieba, Substrate-induced dimerization of engineered monomeric variants of triosephosphate isomerase from Trichomonas vaginalis, PLoS ONE10 (2015) e0141747; https://doi.org/10.1371/journal.pone.014174710.1371/journal.pone.0141747
  28. 28. P. Jiménez-Sandoval, J. L. Vique-Sanchez, M. L. Hidalgo, G. Velazquez-Juarez, C. Díaz-Quezada, L. F. Arroyo-Navarro, G. M. Morán, J. Fattori, A. J. Diaz-Salazar, E. Rudiño-Pinera, R. Sotelo-Mundo, A. C. Migliorini-Figueira, S. Lara-Gonzalez, C. G. Benítez-Cardoza and L. G. Brieba, A competent catalytic active site is necessary for substrate induced dimer assembly in triosephosphate isomerase, Biochim. Biophys. Acta – Prot. Proteom.1865 (2017) 1423–1432; https://doi.org/10.1016/j.bbapap.2017.07.01410.1016/j.bbapap.2017.07.014
  29. 29. G. Álvarez, J. Martínez, B. Aguirre-López, N. Cabrera, L. Pérez-Díaz, M. T. de Gómez-Puyou, A. Gómez-Puyou, R. Pérez-Montfort, B. Garat, A. Merlino, M. González and H. Cerecetto, New chemotypes as Trypanosoma cruzi triosephosphate isomerase inhibitors: a deeper insight into the mechanism of inhibition, J. Enzyme Inhib. Med. Chem.29 (2014) 198–204; https://doi.org/10.3109/14756366.2013.76541510.3109/14756366.2013.765415
  30. 30. A. Gómez-Puyou, E. Saavedra-Lira, I. Becker, R. A. Zubillaga, A. Rojo-Dominguez and R. Perez-Montfort, Using evolutionary changes to achieve species-specific inhibition of enzyme action — studies with triosephosphate isomerase, Chem. Biol.2 (1995) 847–855; https://doi.org/10.1016/1074-5521(95)90091-810.1016/1074-5521(95)90091-8
  31. 31. M. de N. C. Soeiro and S. L. Castro, Screening of potential anti-Trypanosoma cruzi candidates: In vitro and in vivo studies, Open Med. Chem. J.5 (2011) 21–30; https://doi.org/10.2174/187410450110501002110.2174/1874104501105010021310389721629508
  32. 32. G. Álvarez, B. Aguirre-López, J. Varela, M. Cabrera, A. Merlino, G. V. López, M. L. Lavaggi, W. Porcal, R. Di Maio, M. González, H. Cerecetto, N. Cabrera, R. Pérez-Montfort, M. Tuena de Gómez-Puyou and A. Gómez-Puyou, Massive screening yields novel and selective Trypanosoma cruzi triosephosphate isomerase dimer-interface-irreversible inhibitors with anti-trypanosomal activity, Eur. J. Med. Chem.45 (2010) 5767–5772; https://doi.org/10.1016/j.ejmech.2010.09.03410.1016/j.ejmech.2010.09.03420889239
  33. 33. C. G. Benítez-Cardoza, D. A. Fernández-Velasco and J. L. Vique-Sánchez, Triosephosphate isom-erase inhibitors as potential drugs against Clostridium perfringens, Chem. Sel.5 (2020) 2365–2370; https://doi.org/10.1002/slct.20190463210.1002/slct.201904632
  34. 34. J. L. Vique-Sánchez, L. A. Caro-Gómez, L. G. Brieba and C. G. Benítez-Cardoza, Developing a new drug against trichomoniasis, new inhibitory compounds of the protein triosephosphate isomerase, Parasitol. Int.76 (2020) Article ID 102086; https://doi.org/10.1016/j.parint.2020.10208610.1016/j.parint.2020.102086
  35. 35. A. Téllez-Valencia, S. Avila-Ríos, R. Pérez-Montfort, A. Rodríguez-Romero, M. Tuena de Gómez-Puyou, F. López-Calahorra and A. Gómez-Puyou, Highly specific inactivation of triosephosphate isomerase from Trypanosoma cruzi, Biochem. Biophys. Res. Commun.295 (2002) 958–963; https://doi.org/10.1016/s0006-291x(02)00796-910.1016/S0006-291X(02)00796-9
  36. 36. B. Hernández-Ochoa, G. Navarrete-Vázquez, C. Nava-Zuazo, A. Castillo-Villanueva, S. T. Méndez, A. Torres-Arroyo, S. Gómez-Manzo, J. Marcial-Quino, M. Ponce-Macotela, Y. Rufino-González, M. Martínez-Gordillo, G. Palencia-Hernández, N. Esturau-Escofet, E. Calderon-Jaimes, J. Oria-Hernández and H. Reyes-Vivas, Novel giardicidal compounds bearing proton pump inhibitor scaffold proceeding through triosephosphate isomerase inactivation, Sci. Rep.7 (2017) Article ID 7810; https://doi.org/10.1038/s41598-017-07612-y10.1038/s41598-017-07612-y555269128798383
DOI: https://doi.org/10.2478/acph-2021-0032 | Journal eISSN: 1846-9558 | Journal ISSN: 1330-0075
Language: English
Page range: 485 - 495
Accepted on: Oct 9, 2020
Published on: Dec 31, 2020
Published by: Croatian Pharmaceutical Society
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year
Related subjects:

© 2020 Isidro Palos, Rosa Moo-Puc, José Luis Vique-Sánchez, Claudia G. Benítez-Cardoza, Antonio Monge, Juan Carlos Villalobos-Rocha, Alma D. Paz-Gonzalez, Gildardo Rivera, published by Croatian Pharmaceutical Society
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.