Have a personal or library account? Click to login
Effect of sacubitril/valsartan on inflammation and oxidative stress in doxorubicin-induced heart failure model in rabbits Cover

Effect of sacubitril/valsartan on inflammation and oxidative stress in doxorubicin-induced heart failure model in rabbits

Open Access
|Dec 2020

References

  1. 1. E. Tanai and S. Frantz, Pathophysiology of heart failure, Compr. Physiol. 6 (2015) 187–214; https://doi.org/10.1002/cphy.c14005510.1002/cphy.c14005526756631
  2. 2. P. Anversa, P. Li, A. Malhotra, X. Zhang, M. V. Herman and J. M. Capasso, Effects of hypertension and coronary constriction on cardiac function, morphology, and contractile proteins in rats, Am. J. Physiol. 265 (1993) H713-H724; https://doi.org/10.1152/ajpheart.1993.265.2.H71310.1152/ajpheart.1993.265.2.H7138368372
  3. 3. B. Vulesevic, M. G. Sirois, B. G. Allen, S. D. Denus and M. White, Subclinical inflammation in heart failure: A neutrophil perspective author links open overlay panel, Can. J. Cardiol. 34 (2018) 717–725; https://doi.org/10.1016/j.cjca.2018.01.01810.1016/j.cjca.2018.01.01829801737
  4. 4. F. Piccirillo, M. Carpenito, G. Verolino, C. Chello, A. Nusca, M. Lusini, C. Spadaccio, F. Nappi, G. D. Sciascio and A. Nenna, Changes of the coronary arteries and cardiac microvasculature with aging: Implications for translational research and clinical practice, Mech. Ageing Dev. 184 (2019) 111161; https://doi.org/10.1016/j.mad.2019.11116110.1016/j.mad.2019.11116131647940
  5. 5. P. Balakumar, A. P. Singh and M. Singh, Rodent models of heart failure, J. Pharmacol. Toxicol. Meth. 56 (2007) 1–10; https://doi.org/10.1016/j.vascn.2007.01.00310.1016/j.vascn.2007.01.00317391988
  6. 6. Y. Matsuzawa and A. Lerman, Endothelial dysfunction and coronary artery disease: Assessment, prognosis and treatment, Coron. Art. Dis. 25 (2014) 713–724; https://doi.org/10.1097%2FMCA.000000000000017810.1097/MCA.0000000000000178422030125365643
  7. 7. M. M. Alem, Endothelial dysfunction in chronic heart failure: assessment, findings, significance, and potential therapeutic targets, Int. J. Mol. Sci.20 (2019) Article ID 3198; https://doi.org/10.3390/ijms2013319810.3390/ijms20133198665153531261886
  8. 8. M. Endoh, Amrinone, Forerunner of novel cardiotonic agents, caused paradigm shift of heart failure pharmacotherapy, Circul. Res. 113 (2013) 358–361; https://doi.org/10.1161/CIRCRESAHA.113.30168910.1161/CIRCRESAHA.113.30168923908328
  9. 9. S. Steven, K. Frenis, M. Oelze, S. Kalinovic, M. Kuntic, M. T. B. Jimenez, K. Vujacic-Mirski, J. Helm-städter, S. Kröller-Schön, T. Münzel and A. Daiber, Vascular inflammation and oxidative stress: Major triggers for cardiovascular disease, Oxid. Med. Cell. Longev. 2019 (2019) Article ID 7092151 (26 pages); https://doi.org/10.1155/2019/709215110.1155/2019/7092151661239931341533
  10. 10. J. Habibi, A. R. Aroor, N. A. Das, C. M. Manrique-Acevedo, M. S. Johnson, M. R. Hayden, R. Nistala, C. Wiedmeyer, B. Chandrasekar and V. G. DeMarco, The combination of a neprilysin inhibitor (sacubitril) and angiotensin-II receptor blocker (valsartan) attenuates glomerular and tubular injury in the Zucker Obese rat, Cardiovasc. Diabetol. 18 (2019) Article ID 40; https://doi.org/10.1186/s12933-019-0847-810.1186/s12933-019-0847-8643276030909895
  11. 11. S. Yandrapalli, M. H. Khan, Y. Rochlani and W. S. Aronow, Sacubitril/valsartan in cardiovascular disease: evidence to date and place in therapy, Ther. Adv. Cardiovasc Dis. 12 (2018) 217–231; 10.1177/175394471878453610.1177/1753944718784536
  12. 12. P. V. M. Romão, R. A. C. Palozi, L. P. Guarnier, A. O. Silva, B. R. Lorençone, S. R. Nocchi, C. C. de Freitas Sari Moura, E. L. B. Lourenço, D. B. Silva and A. Gasparotto Junior, Cardioprotective effects of Plinia cauliflora (Mart.) Kausel in a rabbit model of doxorubicin-induced heart failure, J. Ethnopharmacol.242 (2019) Article ID 112042; https://doi.org/10.1016/j.jep.2019.11204210.1016/j.jep.2019.112042
  13. 13. R. K. Trivedi, D. J. Polhemus, Z. Li, D. Yoo, H. Koiwaya, A. Scarborough, T. T. Goodchild and D. J. Lefer, Combined angiotensin receptor–neprilysin inhibitors improve cardiac and vascular function via increased no bioavailability in heart failure, J. Am. Heart Assoc. 7 (2018) e008268; https://doi.org/10.1161/JAHA.117.00826810.1161/JAHA.117.008268
  14. 14. C. W. Yancy, M. Jessup, B. Bozkurt, J. Butler, D. E. Casey, M. M. Colvin, M. H. Drazner, G. S. Filippatos, G. C. Fonarow, M. M. Givertz, S. M. Hollenberg, J. Lindenfeld, F. A. Masoudi, P. E. McBride, P. N. Peterson, L. W. Stevenson and C. Westlake, 2017 ACC/AHA/HFSA Focused Update of the 2013 ACCF/AHA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America, Circulation136 (2017) e137–e161; https://doi.org/10.1161/CIR.000000000000050910.1161/CIR.0000000000000509
  15. 15. Y. Suematsu, S. Miura, M. Goto, Y. Matsuo, T. Arimura, T. Kuwano, S. Imaizumi, A. Iwata, E. Yahiro and K. Saku, LCZ696, an angiotensin receptor-neprilysin inhibitor, improves cardiac function with the attenuation of fibrosis in heart failure with reduced ejection fraction in streptozotocin-induced diabetic mice, Eur. J. Heart Fail. 18 (2016) 386–393; https://doi.org/10.1002/ejhf.47410.1002/ejhf.474
  16. 16. Q.-Y. Zhao, C.-X. Huang, H. Jiang, E. Okello, X. Wang, Y.-H. Tang and G.-S. Li, Acetylcholine-regulated K+ current remodelling in the atrium after myocardial infarction and valsartan administration, Can. J. Cardiol.25 (2009) e115-8; https://doi.org/10.1016/s0828-282x(09)70069-810.1016/S0828-282X(09)70069-8
  17. 17. J. V. J. McMurray, M. Packer, A. S. Desai, J. Gong, M. P. Lefkowitz, A. R. Rizkala, J. L. Rouleau, V. C. Shi, S. D. Solomon, K. Swedberg and M. R. Zile, Angiotensin-neprilysin inhibition versus enal-april in heart failure, N. Engl. J Med. 371 (2014) 993–1004; https://doi.org/10.1056/NEJMoa140907710.1056/NEJMoa140907725176015
  18. 18. A. Strigli, C. Raab, S. Hessler, T. Huth, A. J. T. Schuldt, C. Alzheimer, T Friedrich, P. W. Burridge, M. Luedde and M. Schwake, Doxorubicin induces caspase-mediated proteolysis of KV7.1, Commun. Biol. 1 (2018) Article ID 155; https://doi.org/10.1038/s42003-018-0162-z10.1038/s42003-018-0162-z616225830302399
  19. 19. G. Tse, Mechanisms of cardiac arrhythmias, J. Arrhythm. 32 (2016) 75–81; https://doi.org/10.1016/j.joa.2015.11.00310.1016/j.joa.2015.11.003482358127092186
  20. 20. J. Zheng, L. H. C. Michelle, M. M. B. Sattar, Y. Huang and J. S. Bian, Cardioprotective effects of epigallocatechin-3-gallate against doxorubicin-induced cadiomyocyte injury, Eur. J. Pharmacol. 652 (2011) 82–88; https://doi.org/10.1016/j.ejphar.2010.10.08210.1016/j.ejphar.2010.10.08221114975
  21. 21. E. K. C. Kong, Y. Huang, J. E. Sanderson, K. B. Chen, S. Yu and C. M. Yu, A novel anti-fibrotic agent, baicalein for the treatment of myocardial fibrosis in spontaneously hypertensive rats, Eur. J. Pharmacol. 658 (2011) 175–181; https://doi.org/10.1016/j.ejphar.2011.02.03310.1016/j.ejphar.2011.02.03321371455
  22. 22. M. Imran, M. D. Quamrul Hassan, M. D. S. Akhtar, O. Rahman, M. Akhtar and A. K. Najmi, Sacubitril and valsartan protect from experimental myocardial infarction by ameliorating oxidative damage in Wistar rats, Clin. Exp. Hypert. 41 (2017) 62–69; https://doi.org/10.1080/10641963.2018.144186210.1080/10641963.2018.144186229595329
  23. 23. E. De Angelis, M. Pecoraro, M. R. Rusciano, M. Ciccarelli and A. Popolo, Cross-talk between neurohormonal pathways and the immune system in heart failure: A review of the literature, Int. J. Mol. Sci.20 (2019) Article ID 1698; https://doi.org/10.3390/ijms2007169810.3390/ijms20071698648026530959745
  24. 24. P. M Ridker, E. Danielson, N. Rifai and R. J. Glynn, Valsartan, blood pressure reduction, and C-reactive protein – primary report of the Val-MARC trial, Hypertension48 (2006) 73–79; https://doi.org/10.1161/01.HYP.0000226046.58883.3210.1161/01.HYP.0000226046.58883.3216714425
  25. 25. S. Toyoda, A. Haruyama, S. Inami, T. Arikawa, F. Saito, R. Watanabe, M. Sakuma, S. Abe, T. Nakajima, A. Tanaka, K. Node and T. Inoue, Effects of carvedilol vs bisoprolol on inflammation and oxidative stress in patients with chronic heart failure, J. Cardiol. 75 (2020) 140–147; https://doi.org/10.1016/j.jjcc.2019.07.01110.1016/j.jjcc.2019.07.01131444140
  26. 26. W. Szczurek and B. S. Jurkiewicz, Oxidative stress and inflammatory markers – the future of heart failure diagnostics?, Kardiochir. Torakochir. Pol.12 (2015) 145–149; https://doi.org/10.5114%2Fkitp.2015.52856
  27. 27. W. Jing, N. D. Vaziri, A. Nunes, Y. Suematsu, T. Farzaneh, M. Khazaeli and H. Moradi, LCZ696 (sacubitril/valsartan) ameliorates oxidative stress, inflammation, fibrosis and improves renal function beyond angiotensin receptor blockade in CKD, Am. J. Transl. Res. 9 (2017) 5473–5484.
DOI: https://doi.org/10.2478/acph-2021-0030 | Journal eISSN: 1846-9558 | Journal ISSN: 1330-0075
Language: English
Page range: 473 - 484
Accepted on: Sep 30, 2020
Published on: Dec 31, 2020
Published by: Croatian Pharmaceutical Society
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year
Related subjects:

© 2020 Chun Yu, Donghao Li, Zhongyan Li, Donghui Yu, Guijuan Zhai, published by Croatian Pharmaceutical Society
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.