Have a personal or library account? Click to login
Preparation, characterization and antimicrobial assessment of selected ciprofloxacin salts Cover

Preparation, characterization and antimicrobial assessment of selected ciprofloxacin salts

Open Access
|Dec 2020

References

  1. 1. D. M. Campoli-Richards, J. P. Monk, A. Price, P. Benfield, P. A. Todd and A. Ward, Ciprofloxacin. A review of its antibacterial activity, pharmacokinetic properties and therapeutic use, Drugs35 (1988) 373–447; https://doi.org/10.2165/00003495-198835040-0000310.2165/00003495-198835040-00003
  2. 2. A. D. Pranger, J. W. C. Alffenaar and R. E. Aarnoutse, Fluoroquinolones, the cornerstone of treatment of drug-resistant tuberculosis: A pharmacokinetic and pharmacodynamics approach, Curr. Pharm. Des. 17 (2011) 2900–2930; https://doi.org/10.2174/13816121179747020010.2174/138161211797470200
  3. 3. L. D. Ross and C. M. Riley, Aqueous solubilities of some variously substituted quinolone antimicrobials, Int. J. Pharm. 63 (1990) 237–250; https://doi.org/10.1016/0378-5173(90)90130-V10.1016/0378-5173(90)90130-V
  4. 4. A. O. Surov, A. N. Manin, A. P. Voronin, K. V. Drozd, A. A. Simagina, A. V. Churakov and G. L. Perlovich, Pharmaceutical salts of ciprofloxacin with dicarboxylic acids, Eur. J. Pharm. Sci. 77 (2015) 112–121; https://doi.org/10.1016/j.ejps.2015.06.00410.1016/j.ejps.2015.06.004
  5. 5. M. E. Olivera, R. H. Manzo, H. E. Junginger, K. K. Midha, V. P. Shah, S. Stavchansky, J. B. Dressman and D. M. Barends, Biowaiver monographs for immediate release solid oral dosage forms: ciprofloxacin hydrochloride, J Pharm Sci. 100 (2011) 22–33; https://doi.org/10.1002/jps.2225910.1002/jps.22259
  6. 6. H. Arakawa, Y. Shirasaka and M. Haga, Active intestinal absorption of fluoroquinolone antibacterial agent ciprofloxacin by organic anion transporting polypeptide, Biopharm. Drug Dispos. 33 (2012) 332–341; https://doi.org/10.1002/bdd.180910.1002/bdd.1809
  7. 7. Z. Iqbal, A. Khan, A. Naz, J. Khan and G. Khan, Pharmacokinetic interaction of ciprofloxacin with diclofenac: a single-dose, two-period crossover study in healthy adult volunteers, Clin. Drug Invest. 29 (2009) 275–281; https://doi.org/10.2165/00044011-200929040-0000610.2165/00044011-200929040-00006
  8. 8. D. El-Sabawi, R. Abu-Dahab, A. G. Al Bakri and I. I. Hamdan, Studies on the interaction between ciprofloxacin hydrochloride and diclofenac sodium, Trop. J. Pharm. Res. 18 (2019) 377–384; https://doi.org/10.4314/tjpr.v18i2.2210.4314/tjpr.v18i2.22
  9. 9. P. P. Bag, S. Ghosh, H. Khan, R. Devarapalliand and C. M. Reddy, Drug-drug salt forms of ciprofloxacin with diflunisal and indoprofen, Cryst. Eng. Commun. 16 (2014) 7393–7396; https://doi.org/10.1039/C4CE00631C10.1039/C4CE00631C
  10. 10. C. Florindo, A. Costa, C. Matos, S. L. Nunes, A. N. Matias, C. M. Duarte, L. P. Rebelo, L. C. Branco and I. M. Marrucho, Novel organic salts based on fluoroquinolone drugs: synthesis, bioavailability and toxicological profiles, Int. J. Pharm.469 (2014) 179–189; https://doi.org/10.1016/j.ijpharm.2014.04.03410.1016/j.ijpharm.2014.04.034
  11. 11. M. Ali and M. E. Byrne, Challenges and solutions in topical ocular drug-delivery systems, Expert. Rev. Clin. Pharmacol. 1 (2008) 145–161; https://doi.org/10.1586/17512433.1.1.14510.1586/17512433.1.1.145
  12. 12. A. A. Firsov, I. Y. Lubenko, M. V. Smirnova, E. N. Strukova and S. H. Zinner, Enrichment of fluoroquinolone-resistant Staphylococcus aureus: oscillating ciprofloxacin concentrations simulated at the upper and lower portions of the mutant selection window, J. Antimicrob. Chemother.52 (2008) 1924–1928; https://doi.org/10.1128/AAC.01371-0710.1128/AAC.01371-07
  13. 13. N. A. Lozano-Huntelman, N. Singh, A. Valencia, P. Mira, M. Sakayan, I. Boucher, S. Tang, K. Brennan, C. Gianvecchio and S. Fitz-Gibbon, Evolution of antibiotic cross-resistance and collateral sensitivity in Staphylococcus epidermidis using the mutant prevention concentration and the mutant selection window, Evol. Appl. 13 (2020) 808–823; https://doi.org/10.1111/eva.1290310.1111/eva.12903
  14. 14. A. Espinel-Ingroff, A. Fothergill, M. Ghannoum, E. Manavathu, L. Ostrosky-Zeichner and M. Pfaller, Quality control and reference guidelines for CLSI broth microdilution method (m38-a document) for susceptibility testing of anidulafungin against molds, J. Clin. Microbiol. 45 (2007) 2180–2182; https://doi.org/10.1128/JCM.00399-0710.1128/JCM.00399-07
  15. 15. A. Wolfe, G. H. Shimer and J. T. Meehan, Polycyclic aromatic hydrocarbons physically intercalate into duplex regions of denatured DNA, Biochemistry26 (1987) 6392–6396; https://doi.org/10.1021/bi00394a01310.1021/bi00394a013
  16. 16. P. Gould, Salt selection for basic drugs, Int. J. Pharm. 33 (1986) 201–217; https://doi.org/10.1016/0378-5173(86)90055-410.1016/0378-5173(86)90055-4
  17. 17. K. Zhang, L. Dai and N. Chetwyn, Simultaneous determination of positive and negative pharmaceutical counter ions using mixed-mode chromatography coupled with charged aerosol detector, J. Chromatogr. A1217 (2010) 5776–5784; https://doi.org/10.1016/j.chroma.2010.07.03510.1016/j.chroma.2010.07.035
  18. 18. S. Bouabdallah, H. Trabelsi, M. R. Driss and S. Touil, Determination and degradation study of enalapril maleate by high performance liquid chromatography, Pharm. Chem. J. 51 (2017) 735–741; https://doi.org/10.1007/s11094-017-1684-210.1007/s11094-017-1684-2
  19. 19. B. W. Pack and D. S. Risley, Evaluation of a monolithic silica column operated in the hydrophilic interaction chromatography mode with evaporative light scattering detection for the separation and detection of counter-ions, J. Chromatogr. A1073 (2005) 269–275; https://doi.org/10.1016/j.chroma.2004.09.06110.1016/j.chroma.2004.09.061
  20. 20. M. Takač, Effects of substituents on the NMR features of basic bicyclic ring systems of fluoroquinolone antibiotics and the relationships between NMR chemical shifts, molecular descriptors and drug-likeness parameters, Acta Pharm. 60 (2010) 237–254; https://doi.org/10.2478/v10007-010-0023-x10.2478/v10007-010-0023-x
  21. 21. S. Durgapal, S. Mukhopadhyay and L. Goswami, Preparation, characterization and evaluation of floating microparticles of ciprofloxacin, Int. J. Appl. Pharm. 9 (2017) 1–8; https://doi.org/10.22159/ijap.2017v9i1.1418310.22159/ijap.2017v9i1.14183
  22. 22. H. Changa, W. T. Jianga, Z. Lib, C. Y. Kuoc, Q. Wud, J. S. Jeana and G. Lvea, Interaction of ciprofloxacin and probe compounds with palygorskite PFl-1, J. Hazard. Mat. 303 (2016) 55–63; https://doi.org/10.1016/j.jhazmat.2015.10.01210.1016/j.jhazmat.2015.10.012
  23. 23. M. P. López-Gresa, R. Ortiz and L. Perelló, Interactions of metal ions with two quinolone antimicrobial agents (cinoxacin and ciprofloxacin). Spectroscopic and X-ray structural characterization. Antibacterial studies, J. Inorg. Biochem.92 (2002) 65–74; https://doi.org/10.1016/S0162-0134(02)00487-710.1016/S0162-0134(02)00487-7
  24. 24. K. Karimi, E.Pallagi, P. Szabó-Révész, I. Csóka and R. Ambrus, Development of a microparticle-based dry powder inhalation formulation of ciprofloxacin hydrochloride applying the quality by design approach, Drug Des. Dev. Ther.10 (2016) 3331–3343; https://doi.org/10.2147/DDDT.S11644310.2147/DDDT.S116443
  25. 25. J. G. Holler, S. B. Christensen, H. C. Slotved, H. B. Rasmussen, A. Gúzman, C. E. Olsen, B. Petersen and P. Mølgaard, Novel inhibitory activity of the Staphylococcus aureus NorA efflux pump by a kaempferol rhamnoside isolated from Persea lingue Nees, J. Antimicrob. Chemother.67 (2012) 1138–1144; https://doi.org/10.1093/jac/dks00510.1093/jac/dks005
  26. 26. G. P. Gesu, F. Marchetti, L. Piccoli and A. Cavallero, Levofloxacin and ciprofloxacin in vitro activities against 4,003 clinical bacterial isolates collected in 24 Italian laboratories, J. Antimicrob. Chemother.47 (2003) 816–819; https://doi.org/10.1128/aac.47.2.816-819.200310.1128/AAC.47.2.816-819.2003
  27. 27. J. Vázquez, S. Merino, Ò. Doměnech, M. Berlanga, M. Viñas and M. Montero, Determination of the partition coefficients of a homologous series of ciprofloxacin: influence of the N-4 piperazinyl alkylation on the antimicrobial activity, Int. J. Pharm.220 (2001) 53–62; https://doi.org/10.1016/s0378-5173(01)00646-910.1016/S0378-5173(01)00646-9
  28. 28. I. Vilfan, P. Drevenšek, I. Turel and U. N. Poklar, Characterization of ciprofloxacin binding to the linear single- and double-stranded DNA, Biochim. Biophys. Acta1628 (2003) 111–122; https://doi.org/10.1016/s0167-4781(03)00135-010.1016/S0167-4781(03)00135-0
  29. 29. D. Hooper, Mode of action of fluoroquinolones, Drugs58 (1999) 6–10; https://doi.org/10.2165/00003495-199958002-0000210.2165/00003495-199958002-00002
  30. 30. K. J. Aldred, R. J. Kerns and N. Osheroff, Mechanism of quinolone action and resistance, Biochemistry53 (2014) 1565–1574;https://doi.org/10.1021/bi500056410.1021/bi5000564
  31. 31. C. Noble, F. Barnard and A. Maxwell, Quinolone-DNA interaction: sequence-dependent binding to single-stranded DNA reflects the interaction within the gyrase-DNA complex, Antimicrob. Agents Chemother. 47 (2003) 854–862; https://doi.org/10.1128/aac.47.3.854-862.200310.1128/AAC.47.3.854-862.2003
DOI: https://doi.org/10.2478/acph-2021-0028 | Journal eISSN: 1846-9558 | Journal ISSN: 1330-0075
Language: English
Page range: 365 - 382
Accepted on: Sep 18, 2020
Published on: Dec 31, 2020
Published by: Croatian Pharmaceutical Society
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year
Related subjects:

© 2020 Imad I. Hamdan, Dina El-Sabawi, Rula Darwish, Lina A. Dahabiyeh, published by Croatian Pharmaceutical Society
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.