References
- 1. N. Marcoux, S. N. Gettinger, G. O. Kane, K. C. Arbour, F. A. Shepherd, Z. Piotrowska and L. V. Sequist, EGFR-mutant adenocarcinomas that transform to small-cell lung cancer and other neuroendocrine carcinomas: clinical outcomes, J. Clin. Oncol.37 (2019) 278–285; https://doi.org/10.1200/JCO.18.0158510.1200/JCO.18.01585700177630550363
- 2. M. M. Moasser, Targeting the function of the HER2 oncogene in human cancer therapeutics, Oncogene26 (2007) 6577–6592; https://doi.org/10.1038/sj.onc.121047810.1038/sj.onc.1210478307158017486079
- 3. C. Yewale, D. Baradia, I. Vhora, S. Patil and A. Misra, Epidermal growth factor receptor targeting in cancer: a review of trends and strategies, Biomaterials34 (2013) 8690–8707; https://doi.org/10.1016/j.biomaterials.2013.07.10010.1016/j.biomaterials.2013.07.10023953842
- 4. T. Ishikawa, M. Seto, H. Banno, Y. Kawakita, M. Oorui, A. Nakayama, H. Miki, H. Kamiguchi, T. Tanaka, N. Habuka, S. Sogabe, J. Yano, K. Aertgeerts and K. Kamiyama, Design and synthesis of novel human epidermal growth factor receptor 2 (HER2)/epidermal growth factor receptor (EGFR) dual inhibitors bearing a pyrrolo[3,2-d]pyrimidine scaffold, J. Med. Chem.54 (2011) 8030–8050; https://doi.org/10.1021/jm200863410.1021/jm200863422003817
- 5. S. Kamath and J. K. Buolamwini, Targeting EGFR and HER-2 receptor tyrosine kinases for cancer drug discovery and development, Med. Res. Rev. 26 (2006) 569–594; https://doi.org/10.1002/med.2007010.1002/med.2007016788977
- 6. E. Avizienyte, R. A. Ward and A. P. Garner, Comparison of the EGFR resistance mutation profiles generated by EGFR-targeted tyrosine kinase inhibitors and the impact of drug combinations, Biochem. J. 415 (2008) 197–206; https://doi.org/10.1042/BJ2008072810.1042/BJ2008072818588508
- 7. Y. B. Li, Z. Q. Wang, X. Yan, M. W. Chen, J. L. Bao, G. S. Wu, Z. M. Ge, D. M. Zhou, Y. T. Wang and R. T. Li, IC-4, a new irreversible EGFR inhibitor, exhibits prominent anti-tumor and anti-angiogenesis activities, Cancer Lett.340 (2013) 88–96; https://doi.org/10.1016/j.canlet.2013.07.00510.1016/j.canlet.2013.07.00523856030
- 8. L. V. Sequsit, J. C. Soria, J. W. Goldman, H. A. Wakelee, S. M. Gadgeel, A. Varga, V. Papadimitrakopoulou, B. J. Solomon, G. R. Oxnard, R. Dziadziuszko, D. L. Aisner, R. C. Doebele, C. Galasso, E. B. Garon, R. S. Heist, J. Logan, J. W. Neal, M. A. Mendenhall, S. Nichols, Z. Piotrowska, A. J. Wozniak, M. Raponi, C. A. Karlovich, S. Jaw-Tsai, J. Isaacson, D. Despain, S. L. Matheny, L. Rolfe, A. R. Allen and D. R. Camidge, Rociletinib in EGFR-mutated non-small-cell lung cancer, New Engl. J. Med.372 (2015) 1700–1709; https://doi.org/10.1056/NEJMoa141365410.1056/NEJMoa141365425923550
- 9. S. L. Greig, Osimertinib: First global approval, Drugs76 (2016) 263–273; https://doi.org/10.1007/s40265-015-0533-410.1007/s40265-015-0533-426729184
- 10. K. S. Thress, C. P. Paweletz, E. Felip, B. C. Cho, D. Stetson, B. Dougherty, Z. W. Lai, A. Markovets, A. Vivancos, Y. N. Kuang, D. Ercan, S. E. Matthews, M. Cantarini, J. C. Barrett, P. A. Jänne and G. R. Oxnard, Acquired EGFR C797S mutation mediates resistance to AZD9291 in non-small cell lung cancer harboring EGFR T790M, Nat. Med.21 (2015) 560–562; https://doi.org/10.1038/nm.385410.1038/nm.3854477118225939061
- 11. X. Zhang, F. Xu, L. Tong, T. Zhang, H. Xie, X. Lu, X. Ren and K. Ding, Design and synthesis of selective degraders of EGFRL858R/T790M mutant, Eur. J. Med. Chem.192 (2020) Article ID 112199; https://doi.org/10.1016/j.ejmech.2020.11219910.1016/j.ejmech.2020.11219932171162
- 12. Y. Y. Xu, Y. Cao, H. Ma, H. Q. Li and G. Z. Ao, Design, synthesis and molecular docking of a, b-unsaturated cyclohexanone analogous of curcumin as potent EGFR inhibitors with antiproliferative activity, Bioorg. Med. Chem.21 (2013) 388–394; https://doi.org/10.1016/j.bmc.2012.11.03110.1016/j.bmc.2012.11.03123245570
- 13. V. Nelson, J. Ziehr, M. Agulnik and M. Johnson, Afatinib: emerging next-generation tyrosine kinase inhibitor for NSCLC, Onco Target. Ther.6 (2013) 135–143; https://doi.org/10.2147/OTT.S2316510.2147/OTT.S23165359403723493883
- 14. B. R. Kang, A. L. Shan, Y. P. Li, J. Xu, S. M. Lu and S. Q. Zhang, Discovery of 2-aryl-8-hydroxy (or methoxy)-isoquinolin-1(2H)-ones as novel EGFR inhibitor by scaffold hopping, Bioorg. Med. Chem.21 (2013) 6956–6964; https://doi.org/10.1016/j.bmc.2013.09.02710.1016/j.bmc.2013.09.02724094432
- 15. M. R. V. Finlay, M. Anderton, S. Ashton, P. Ballard, P. A. Bethel, M. R. Box, R. H. Bradbury, S. J. Brown, S. Butterworth, A. Campbell, C. Chorley, N. D. Colclough, A. E. Cross, G. S. Currie, M. Grist, L. Hassall, G. B. Hill, D. James, P. Kemmitt, T. Klinowska, G. Lamont, S. G. Lamont, N. Martin, H. L. McFarland, M. J. Mellor, J. P. Orme, D. Perkins, P. Perkins, G. Richmond, P. Smith, R. A. Ward, W. J. Waring, D. Whittaker, S. Wells and G. L. Wrigley, Discovery of a potent and selective EGFR inhibitor (AZD9291) of both sensitizing and T790M resistance mutations that spares the wild type form of the receptor, J. Med. Chem.57 (2014) 8249–8267; https://doi.org/10.1021/jm500973a10.1021/jm500973a25271963
- 16. Y. M. Zhang, M. D. Tortorella, J. X. Liao, X. C. Qin, T. T. Chen, J. F. Luo, J. T. Guan, J. J. Talley and Z. C. Tu, Synthesis and evaluation of novel Erlotinib–NSAID conjugates as more comprehensive anticancer agents, ACS Med. Chem. Lett.6 (2015) 1086–1090; https://doi.org/10.1021/acsmedchemlett.5b0028610.1021/acsmedchemlett.5b00286460106126487917
- 17. K. M. Amin, F. F. Barsoum, F. M. Awadallah and N. E. Mohamed, Identification of new potent phthalazine derivatives with VEGFR-2 and EGFR kinase inhibitory activity, Eur. J. Med. Chem.123 (2016) 191–201; https://doi.org/10.1016/j.ejmech.2016.07.04910.1016/j.ejmech.2016.07.04927484508
- 18. H. Zhang, J. Wang, Y. Shen, H. Y. Wang, W. M. Duan, H. Y. Zhao, Y. Y. Hei, M. H. Xin, Y. X. Cao and S. Q. Zhang, Discovery of 2,4,6-trisubstituted pyrido[3,4-d]pyrimidine derivatives as new EGFRTKIs, Eur. J. Med. Chem.148 (2018) 221–237; https://doi.org/10.1016/j.ejmech.2018.02.05110.1016/j.ejmech.2018.02.05129466773
- 19. S. J. Zuo, S. Zhang, S. Mao, X. X. Xie, X. Xiao, M. H. Xin, W. Xuan, Y. Y. He, Y. X. Cao and S. Q. Zhang, Combination of 4-anilinoquinazoline, arylurea and tertiary amine moiety to discover novel anticancer agents, Bioorg. Med. Chem.24 (2016) 179–190; https://doi.org/10.1016/j.bmc.2015.12.00110.1016/j.bmc.2015.12.00126706113
- 20. E. R. Lepper, S. M. Swain, A. R. Tan, W. D. Figg and A. Sparreboom, Liquid chromatographic determination of Erlotinib (OSI-774), an epidermal growth factor receptor tyrosine kinase inhibitor, J. Chromatogr. B796 (2003) 181–188; https://doi.org/10.1016/j.jchromb.2003.08.01510.1016/j.jchromb.2003.08.01514552829
- 21. A. R. Masters, C. J. Sweeney and D. R. Jones, The quantification of Erlotinib (OSI-774) and OSI-420 in human plasma by liquid chromatography-tandem mass spectrometry, J. Chromatogr. B848 (2007) 379–383; https://doi.org/10.1016/j.jchromb.2006.10.04610.1016/j.jchromb.2006.10.04617101305
- 22. L. Z. Wang, M. Y. Lim, T. M. Chin, W. L. Thuya, P. L. Nye, A. Wong, S. Y. Chan, B. C. Goh and P. C. Ho, Rapid determination of gefitinib and its main metabolite, O-desmethyl gefitinib in human plasma using liquid chromatography–tandem mass spectrometry, J. Chromatogr. B879 (2011) 2155–2161; https://doi.org/10.1016/j.jchromb.2011.05.05610.1016/j.jchromb.2011.05.05621703945
- 23. M. Zhao, C. Hartke, A. Jimeno, J. Li, P. He, Y. Zabelina, M. Hidalgo and S. D. Baker, Specific method for determination of gefitinib in human plasma, mouse plasma and tissues using high performance liquid chromatography coupled to tandem mass spectrometry, J. Chromatogr. B819 (2005) 73–80; https://doi.org/10.1016/j.jchromb.2005.01.02710.1016/j.jchromb.2005.01.02715797523
- 24. U.S. Food and Drug Administration, Bioanalytical Method Validation Guidance for Industry, US Department of Health and Human Services, FDA, Center for Drug Evaluation and Research (CDER), Silver Spring (MD) USA, 2018; https://www.fda.gov/media/70858/download; last access date June 1, 2020.
- 25. Y. Zhang, M. R. Huo, J. P. Zhou, S. F. Xie and P. K. Solver, An add-in program for pharmacokinetic and pharmacodynamic data analysis in Microsoft Excel, Comput. Meth. Prog. Bio.99 (2010) 306–314; https://doi.org/10.1016/j.cmpb.2010.01.00710.1016/j.cmpb.2010.01.00720176408
- 26. B. Ma, Q. Zhang, G. J. Wang, Z. M. Wu, J. P. Shaw, Y. Y. Hu, Y. B. Wang, Y. T. Zheng, Z. D. Yang and H. J. Ying, Synthesis and pharmacokinetics of strontium fructose 1,6-diphosphate (Sr-FDP) as a potential antiosteoporosis agent in intact and ovariectomized rats, J. Inorg. Biochem.105 (2011) 563–568; https://doi.org/10.1016/j.jinorgbio.2011.01.00110.1016/j.jinorgbio.2011.01.00121345324
- 27. W. Jiang, J. J. Yang, L. Cao, X. Xiao, X. L. Shi and Y. X. Cao, Modifications of the method for calculating absolute drug bioavailability, J. Pharm. Pharm. Sci.19 (2016) 181–187; https://doi.org/10.18433/J3RG7810.18433/J3RG7827518168
- 28. N. R. Srinivas, Double or multiple/secondary peaks in pharmacokinetics: considerations and challenges from a bio-analytical perspective, Biomed. Chromatogr.26 (2012) 407–408; https://doi.org/10.1002/bmc.268010.1002/bmc.268022213389
- 29. J. B. Johnston, S. Navaratnam, M. W. Pitz, J. M. Maniate, E. Wiechec, H. Baust, J. Gingerich, G. P. Skliris, L. C. Murphy and M. Los, Targeting the EGFR pathway for cancer therapy, Curr. Med. Chem.13 (2006) 3483–3492; https://doi.org/10.2174/09298670677902617410.2174/09298670677902617417168718
- 30. D. Mckillop, E. A. Partridge, M. Hutchison, S. A. Rhead, A. C. Parry, J. Bardsley, H. M. Woodman and H. C. Swaisland, Pharmacokinetics of gefitinib, an epidermal growth factor receptor tyrosine kinase inhibitor, in rat and dog, Xenobiotica34 (2004) 901–915; https://doi.org/10.1080/0049825040000918910.1080/0049825040000918915764410