Have a personal or library account? Click to login
Quantitative analysis and pharmacokinetic study of a novel diarylurea EGFR inhibitor (ZCJ14) in rat plasma using a validated LC-MS/MS method Cover

Quantitative analysis and pharmacokinetic study of a novel diarylurea EGFR inhibitor (ZCJ14) in rat plasma using a validated LC-MS/MS method

Open Access
|Dec 2020

References

  1. 1. N. Marcoux, S. N. Gettinger, G. O. Kane, K. C. Arbour, F. A. Shepherd, Z. Piotrowska and L. V. Sequist, EGFR-mutant adenocarcinomas that transform to small-cell lung cancer and other neuroendocrine carcinomas: clinical outcomes, J. Clin. Oncol.37 (2019) 278–285; https://doi.org/10.1200/JCO.18.0158510.1200/JCO.18.01585700177630550363
  2. 2. M. M. Moasser, Targeting the function of the HER2 oncogene in human cancer therapeutics, Oncogene26 (2007) 6577–6592; https://doi.org/10.1038/sj.onc.121047810.1038/sj.onc.1210478307158017486079
  3. 3. C. Yewale, D. Baradia, I. Vhora, S. Patil and A. Misra, Epidermal growth factor receptor targeting in cancer: a review of trends and strategies, Biomaterials34 (2013) 8690–8707; https://doi.org/10.1016/j.biomaterials.2013.07.10010.1016/j.biomaterials.2013.07.10023953842
  4. 4. T. Ishikawa, M. Seto, H. Banno, Y. Kawakita, M. Oorui, A. Nakayama, H. Miki, H. Kamiguchi, T. Tanaka, N. Habuka, S. Sogabe, J. Yano, K. Aertgeerts and K. Kamiyama, Design and synthesis of novel human epidermal growth factor receptor 2 (HER2)/epidermal growth factor receptor (EGFR) dual inhibitors bearing a pyrrolo[3,2-d]pyrimidine scaffold, J. Med. Chem.54 (2011) 8030–8050; https://doi.org/10.1021/jm200863410.1021/jm200863422003817
  5. 5. S. Kamath and J. K. Buolamwini, Targeting EGFR and HER-2 receptor tyrosine kinases for cancer drug discovery and development, Med. Res. Rev. 26 (2006) 569–594; https://doi.org/10.1002/med.2007010.1002/med.2007016788977
  6. 6. E. Avizienyte, R. A. Ward and A. P. Garner, Comparison of the EGFR resistance mutation profiles generated by EGFR-targeted tyrosine kinase inhibitors and the impact of drug combinations, Biochem. J. 415 (2008) 197–206; https://doi.org/10.1042/BJ2008072810.1042/BJ2008072818588508
  7. 7. Y. B. Li, Z. Q. Wang, X. Yan, M. W. Chen, J. L. Bao, G. S. Wu, Z. M. Ge, D. M. Zhou, Y. T. Wang and R. T. Li, IC-4, a new irreversible EGFR inhibitor, exhibits prominent anti-tumor and anti-angiogenesis activities, Cancer Lett.340 (2013) 88–96; https://doi.org/10.1016/j.canlet.2013.07.00510.1016/j.canlet.2013.07.00523856030
  8. 8. L. V. Sequsit, J. C. Soria, J. W. Goldman, H. A. Wakelee, S. M. Gadgeel, A. Varga, V. Papadimitrakopoulou, B. J. Solomon, G. R. Oxnard, R. Dziadziuszko, D. L. Aisner, R. C. Doebele, C. Galasso, E. B. Garon, R. S. Heist, J. Logan, J. W. Neal, M. A. Mendenhall, S. Nichols, Z. Piotrowska, A. J. Wozniak, M. Raponi, C. A. Karlovich, S. Jaw-Tsai, J. Isaacson, D. Despain, S. L. Matheny, L. Rolfe, A. R. Allen and D. R. Camidge, Rociletinib in EGFR-mutated non-small-cell lung cancer, New Engl. J. Med.372 (2015) 1700–1709; https://doi.org/10.1056/NEJMoa141365410.1056/NEJMoa141365425923550
  9. 9. S. L. Greig, Osimertinib: First global approval, Drugs76 (2016) 263–273; https://doi.org/10.1007/s40265-015-0533-410.1007/s40265-015-0533-426729184
  10. 10. K. S. Thress, C. P. Paweletz, E. Felip, B. C. Cho, D. Stetson, B. Dougherty, Z. W. Lai, A. Markovets, A. Vivancos, Y. N. Kuang, D. Ercan, S. E. Matthews, M. Cantarini, J. C. Barrett, P. A. Jänne and G. R. Oxnard, Acquired EGFR C797S mutation mediates resistance to AZD9291 in non-small cell lung cancer harboring EGFR T790M, Nat. Med.21 (2015) 560–562; https://doi.org/10.1038/nm.385410.1038/nm.3854477118225939061
  11. 11. X. Zhang, F. Xu, L. Tong, T. Zhang, H. Xie, X. Lu, X. Ren and K. Ding, Design and synthesis of selective degraders of EGFRL858R/T790M mutant, Eur. J. Med. Chem.192 (2020) Article ID 112199; https://doi.org/10.1016/j.ejmech.2020.11219910.1016/j.ejmech.2020.11219932171162
  12. 12. Y. Y. Xu, Y. Cao, H. Ma, H. Q. Li and G. Z. Ao, Design, synthesis and molecular docking of a, b-unsaturated cyclohexanone analogous of curcumin as potent EGFR inhibitors with antiproliferative activity, Bioorg. Med. Chem.21 (2013) 388–394; https://doi.org/10.1016/j.bmc.2012.11.03110.1016/j.bmc.2012.11.03123245570
  13. 13. V. Nelson, J. Ziehr, M. Agulnik and M. Johnson, Afatinib: emerging next-generation tyrosine kinase inhibitor for NSCLC, Onco Target. Ther.6 (2013) 135–143; https://doi.org/10.2147/OTT.S2316510.2147/OTT.S23165359403723493883
  14. 14. B. R. Kang, A. L. Shan, Y. P. Li, J. Xu, S. M. Lu and S. Q. Zhang, Discovery of 2-aryl-8-hydroxy (or methoxy)-isoquinolin-1(2H)-ones as novel EGFR inhibitor by scaffold hopping, Bioorg. Med. Chem.21 (2013) 6956–6964; https://doi.org/10.1016/j.bmc.2013.09.02710.1016/j.bmc.2013.09.02724094432
  15. 15. M. R. V. Finlay, M. Anderton, S. Ashton, P. Ballard, P. A. Bethel, M. R. Box, R. H. Bradbury, S. J. Brown, S. Butterworth, A. Campbell, C. Chorley, N. D. Colclough, A. E. Cross, G. S. Currie, M. Grist, L. Hassall, G. B. Hill, D. James, P. Kemmitt, T. Klinowska, G. Lamont, S. G. Lamont, N. Martin, H. L. McFarland, M. J. Mellor, J. P. Orme, D. Perkins, P. Perkins, G. Richmond, P. Smith, R. A. Ward, W. J. Waring, D. Whittaker, S. Wells and G. L. Wrigley, Discovery of a potent and selective EGFR inhibitor (AZD9291) of both sensitizing and T790M resistance mutations that spares the wild type form of the receptor, J. Med. Chem.57 (2014) 8249–8267; https://doi.org/10.1021/jm500973a10.1021/jm500973a25271963
  16. 16. Y. M. Zhang, M. D. Tortorella, J. X. Liao, X. C. Qin, T. T. Chen, J. F. Luo, J. T. Guan, J. J. Talley and Z. C. Tu, Synthesis and evaluation of novel Erlotinib–NSAID conjugates as more comprehensive anticancer agents, ACS Med. Chem. Lett.6 (2015) 1086–1090; https://doi.org/10.1021/acsmedchemlett.5b0028610.1021/acsmedchemlett.5b00286460106126487917
  17. 17. K. M. Amin, F. F. Barsoum, F. M. Awadallah and N. E. Mohamed, Identification of new potent phthalazine derivatives with VEGFR-2 and EGFR kinase inhibitory activity, Eur. J. Med. Chem.123 (2016) 191–201; https://doi.org/10.1016/j.ejmech.2016.07.04910.1016/j.ejmech.2016.07.04927484508
  18. 18. H. Zhang, J. Wang, Y. Shen, H. Y. Wang, W. M. Duan, H. Y. Zhao, Y. Y. Hei, M. H. Xin, Y. X. Cao and S. Q. Zhang, Discovery of 2,4,6-trisubstituted pyrido[3,4-d]pyrimidine derivatives as new EGFRTKIs, Eur. J. Med. Chem.148 (2018) 221–237; https://doi.org/10.1016/j.ejmech.2018.02.05110.1016/j.ejmech.2018.02.05129466773
  19. 19. S. J. Zuo, S. Zhang, S. Mao, X. X. Xie, X. Xiao, M. H. Xin, W. Xuan, Y. Y. He, Y. X. Cao and S. Q. Zhang, Combination of 4-anilinoquinazoline, arylurea and tertiary amine moiety to discover novel anticancer agents, Bioorg. Med. Chem.24 (2016) 179–190; https://doi.org/10.1016/j.bmc.2015.12.00110.1016/j.bmc.2015.12.00126706113
  20. 20. E. R. Lepper, S. M. Swain, A. R. Tan, W. D. Figg and A. Sparreboom, Liquid chromatographic determination of Erlotinib (OSI-774), an epidermal growth factor receptor tyrosine kinase inhibitor, J. Chromatogr. B796 (2003) 181–188; https://doi.org/10.1016/j.jchromb.2003.08.01510.1016/j.jchromb.2003.08.01514552829
  21. 21. A. R. Masters, C. J. Sweeney and D. R. Jones, The quantification of Erlotinib (OSI-774) and OSI-420 in human plasma by liquid chromatography-tandem mass spectrometry, J. Chromatogr. B848 (2007) 379–383; https://doi.org/10.1016/j.jchromb.2006.10.04610.1016/j.jchromb.2006.10.04617101305
  22. 22. L. Z. Wang, M. Y. Lim, T. M. Chin, W. L. Thuya, P. L. Nye, A. Wong, S. Y. Chan, B. C. Goh and P. C. Ho, Rapid determination of gefitinib and its main metabolite, O-desmethyl gefitinib in human plasma using liquid chromatography–tandem mass spectrometry, J. Chromatogr. B879 (2011) 2155–2161; https://doi.org/10.1016/j.jchromb.2011.05.05610.1016/j.jchromb.2011.05.05621703945
  23. 23. M. Zhao, C. Hartke, A. Jimeno, J. Li, P. He, Y. Zabelina, M. Hidalgo and S. D. Baker, Specific method for determination of gefitinib in human plasma, mouse plasma and tissues using high performance liquid chromatography coupled to tandem mass spectrometry, J. Chromatogr. B819 (2005) 73–80; https://doi.org/10.1016/j.jchromb.2005.01.02710.1016/j.jchromb.2005.01.02715797523
  24. 24. U.S. Food and Drug Administration, Bioanalytical Method Validation Guidance for Industry, US Department of Health and Human Services, FDA, Center for Drug Evaluation and Research (CDER), Silver Spring (MD) USA, 2018; https://www.fda.gov/media/70858/download; last access date June 1, 2020.
  25. 25. Y. Zhang, M. R. Huo, J. P. Zhou, S. F. Xie and P. K. Solver, An add-in program for pharmacokinetic and pharmacodynamic data analysis in Microsoft Excel, Comput. Meth. Prog. Bio.99 (2010) 306–314; https://doi.org/10.1016/j.cmpb.2010.01.00710.1016/j.cmpb.2010.01.00720176408
  26. 26. B. Ma, Q. Zhang, G. J. Wang, Z. M. Wu, J. P. Shaw, Y. Y. Hu, Y. B. Wang, Y. T. Zheng, Z. D. Yang and H. J. Ying, Synthesis and pharmacokinetics of strontium fructose 1,6-diphosphate (Sr-FDP) as a potential antiosteoporosis agent in intact and ovariectomized rats, J. Inorg. Biochem.105 (2011) 563–568; https://doi.org/10.1016/j.jinorgbio.2011.01.00110.1016/j.jinorgbio.2011.01.00121345324
  27. 27. W. Jiang, J. J. Yang, L. Cao, X. Xiao, X. L. Shi and Y. X. Cao, Modifications of the method for calculating absolute drug bioavailability, J. Pharm. Pharm. Sci.19 (2016) 181–187; https://doi.org/10.18433/J3RG7810.18433/J3RG7827518168
  28. 28. N. R. Srinivas, Double or multiple/secondary peaks in pharmacokinetics: considerations and challenges from a bio-analytical perspective, Biomed. Chromatogr.26 (2012) 407–408; https://doi.org/10.1002/bmc.268010.1002/bmc.268022213389
  29. 29. J. B. Johnston, S. Navaratnam, M. W. Pitz, J. M. Maniate, E. Wiechec, H. Baust, J. Gingerich, G. P. Skliris, L. C. Murphy and M. Los, Targeting the EGFR pathway for cancer therapy, Curr. Med. Chem.13 (2006) 3483–3492; https://doi.org/10.2174/09298670677902617410.2174/09298670677902617417168718
  30. 30. D. Mckillop, E. A. Partridge, M. Hutchison, S. A. Rhead, A. C. Parry, J. Bardsley, H. M. Woodman and H. C. Swaisland, Pharmacokinetics of gefitinib, an epidermal growth factor receptor tyrosine kinase inhibitor, in rat and dog, Xenobiotica34 (2004) 901–915; https://doi.org/10.1080/0049825040000918910.1080/0049825040000918915764410
DOI: https://doi.org/10.2478/acph-2021-0024 | Journal eISSN: 1846-9558 | Journal ISSN: 1330-0075
Language: English
Page range: 415 - 428
Accepted on: Aug 4, 2020
Published on: Dec 31, 2020
Published by: Croatian Pharmaceutical Society
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year
Related subjects:

© 2020 Sai-Jie Zuo, Xiao-Liang Cheng, Dong-Zheng Liu, Wei-Yi Feng, Yong-Xiao Cao, San-Qi Zhang, published by Croatian Pharmaceutical Society
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.