Have a personal or library account? Click to login
Tryptanthrin exerts anti-breast cancer effects both in vitro and in vivo through modulating the inflammatory tumor microenvironment Cover

Tryptanthrin exerts anti-breast cancer effects both in vitro and in vivo through modulating the inflammatory tumor microenvironment

Open Access
|Nov 2020

References

  1. 1. A. H. N. Kamdje, P. F. S. Etet, L. Vecchio, J. M. Muller, M. Krampera and K. E. Lukong, Signaling pathways in breast cancer: Therapeutic targeting of the microenvironment, Cell. Signal.26 (2014) 2843–2856; https://doi.org/10.1016/j.cellsig.2014.07.03410.1016/j.cellsig.2014.07.03425093804
  2. 2. K. Velaei, N. Samadi, B. Barazvan and J. S. Rad, Tumor microenvironment-mediated chemoresistance in breast cancer, The Breast30 (2016) 92–100; https://doi.org/10.1016/j.breast.2016.09.00210.1016/j.breast.2016.09.00227668856
  3. 3. Q. J. Guo, J. Li and H. S. Lin, Effect and molecular mechanisms of traditional chinese medicine on regulating tumor immunosuppressive microenvironment, BioMed Res. Int.2015 (2015) 261620; https://doi.org/10.1155/2015/26162010.1155/2015/261620448674226161392
  4. 4. M. Pesic and F. R. Greten, Inflammation and cancer: tissue regeneration gone awry, Curr. Opin. Cell. Biol.43 (2016) 55–61; https://doi.org/10.1016/j.ceb.2016.07.01010.1016/j.ceb.2016.07.01027521599
  5. 5. M. Suarez-Carmona, J. Lesage, D. Cataldo and C. Gilles, EMT and inflammation: inseparable actors of cancer progression, Mol. Oncol.11 (2017) 805–823; https://doi.org/10.1002/1878-0261.1209510.1002/1878-0261.12095549649128599100
  6. 6. X. Y. Li, L. Su, Y. M. Jiang, W. B. Gao, C. W. Xu, C. Q. Zeng, J. Song, Y. Xu, W. C. Weng and W. B. Liang, The antitumor effect of xihuang pill on treg cells decreased in tumor microenvironment of 4T1 breast tumor-bearing mice by PI3K/AKT~AP-1 signaling pathway, Evid.-Based Compl. Alt. Med.2018 (2018) 6714829; https://doi.org/10.1155/2018/671482910.1155/2018/6714829593758029849718
  7. 7. F. R. Balkwill and A. Mantovani, Cancer-related inflammation: Common themes and therapeutic opportunities, Semin. Cancer Biol.22 (2012) 33–40; https://doi.org/10.1016/j.semcancer.2011.12.00510.1016/j.semcancer.2011.12.00522210179
  8. 8. Z. T. Li, Y. J. Zhu, C. C. Li, R. Trinh, X. Y. Ren, F. M. Sun, Y. F. Wang, P. Z. Shang, T. Wang, M. Wang, S. L. Morrison and J. Zhang, Anti-VEGFR2-interferon-α2 regulates the tumor microenvironment and exhibits potent antitumor efficacy against colorectal cancer, Oncoimmunology6 (2017) e1290038; https://doi.org/10.1080/2162402X.2017.129003810.1080/2162402X.2017.1290038538437628405526
  9. 9. F. L. Bai, Z. S. Niu, H. Tian, S. M. Li, Z. Lv, T. Y. Zhang, G. P. Ren and D. S. Li, Genetically engineered Newcastle disease virus expressing interleukin 2 is a potential drug candidate for cancer immunotherapy, Immunol. Lett.159 (2014) 36–46; https://doi.org/10.1016/j.imlet.2014.02.00910.1016/j.imlet.2014.02.00924613899
  10. 10. T. van der Heijden, I. Bot and J. Kuiper, The IL-12 cytokine family in cardiovascular diseases, Cytokine122 (2019) 154188; https://doi.org/10.1016/j.cyto.2017.10.01010.1016/j.cyto.2017.10.01029074035
  11. 11. K. Singh, M. Roy, P. Prajapati, A. Lipatova, L. Sripada, D. Gohel, A. Singh, M. Mane, M. M. Godbole, P. M. Chumakov and R. Singh, NLRX1 regulates TNF-α-induced mitochondria-lysosomal crosstalk to maintain the invasive and metastatic potential of breast cancer cells, BBA-Mol. Basis Dis.1865 (2019) 1460–1476; https://doi.org/10.1016/j.bbadis.2019.02.01810.1016/j.bbadis.2019.02.01830802640
  12. 12. K. A. Silverio and S. A. Patel, Harnessing antitumor immunity: Employment of tumor recall antigens to optimize the inflammatory response to cancer (Review), Oncol. Lett.13 (2017) 2015–2020; https://doi.org/10.3892/ol.2017.572110.3892/ol.2017.5721540327428454356
  13. 13. S. Suman, P. K. Sharma, G. Rai, S. Mishra, D. Arora, P. Gupta and Y. Shukla, Current perspectives of molecular pathways involved in chronic inflammation-mediated breast cancer, Biochem. Bioph. Res. Commun.472 (2016) 401–409; https://doi.org/10.1016/j.bbrc.2015.10.13310.1016/j.bbrc.2015.10.13326522220
  14. 14. I. Uehara and N. Tanaka, Role of p53 in the regulation of the inflammatory tumor microenvironment and tumor suppression, Cancers10 (2018) 219; https://doi.org/10.3390/cancers1007021910.3390/cancers10070219607129129954119
  15. 15. J. F. Lima, S. Nofech-Mozes, J. Bayani and J. M. S. Bartlett, EMT in breast carcinoma – A review, J. Clin. Med.5 (2016) 65; https://doi.org/10.3390/jcm507006510.3390/jcm5070065496199627429011
  16. 16. L. Yan, F. Xu and C. L. Dai, Relationship between epithelial-to-mesenchymal transition and the inflammatory microenvironment of hepatocellular carcinoma, J. Exp. Clin. Cancer Res.37 (2018) 203; https://doi.org/10.1186/s13046-018-0887-z10.1186/s13046-018-0887-z611447730157906
  17. 17. L. EL-Hajjar, N. Jalaleddine, A. Shaito, K. Zibara, J. M. Kazan, J. El-Saghir and M. El-Sabban, Bevacizumab induces inflammation in MDA-MB-231 breast cancer cell line and in a mouse model, Cell. Signal.53 (2019) 400–412; https://doi.org/10.1016/j.cellsig.2018.11.00710.1016/j.cellsig.2018.11.00730445167
  18. 18. H. N. Chang, S. T. Huang, Y. C. Yeh, H. S. Wang, T. H. Wang, Y. H. Wu and J. S. Pang, Indigo naturalis and its component tryptanthrin exert anti-angiogenic effect by arresting cell cycle and inhibiting Akt and FAK signaling in human vascular endothelial cells, J. Ethnopharmacol.174 (2015) 474–481; https://doi.org/10.1016/j.jep.2015.08.05010.1016/j.jep.2015.08.05026341616
  19. 19. S. L. Hsuan, S. C. Chang, S. Y. Wang, T. L. Liao, T. T. Jong, M. S. Chien, W. C. Lee, S. S. Chen and J. W. Liao, The cytotoxicity to leukemia cells and antiviral effects of isatis indigotica extracts on pseudorabies virus, J. Ethnopharmacol.123 (2009) 61–67; https://doi.org/10.1016/j.jep.2009.02.02810.1016/j.jep.2009.02.028712679319429341
  20. 20. Y. H. Liang, H. X. Hou, D. R. Li, J. Qin, L. Qiu and H. H. Wu, Studies on in vitro anticancer activity of tryptanthrin B, Chin. Tradit. Herbal Drugs31 (2000) 531–533; https://doi.org/10.3321/j.issn:0253-2670.2000.07.029
  21. 21. J. P. Li, G. H. Zhu, Y. Yuan and M. X. Liu, Anti-tumor and immune function regulation effects of radix isatidis polysaccharides in vivo, Nat. Prod. Res. Dev.29 (2017) 2010–2016; https://doi.org/10.16333/j.1001-6880.2017.12.003
  22. 22. L. L. Liu, J. Chen and Y. P. Shi, Advances in studies on antitumor of Chinese materia medica with heat-clearing and toxin-resolving functions, Chin. Tradit. Herbal Drugs43 (2012) 1203–1212; https://www.cqvip.com/qk/80172x/201211/42183551.html
  23. 23. G. Honda and M. Tabata, Isolation of antifungal principle tryptanthrin, from Strobilanthes Cusia O. Kuntze, Planta Med.36 (1979) 85–86; https://doi.org/10.1055/s-0028-109724510.1055/s-0028-1097245461559
  24. 24. R. Kaur, S. K. Manjal, R. K. Rawal and K. Kumar, Recent synthetic and medicinal perspectives of tryptanthrin, Bioorg. Med. Chem.25 (2017) 4533–4552; https://doi.org/10.1016/j.bmc.2017.07.00310.1016/j.bmc.2017.07.00328720329
  25. 25. E. H. Jung, J. Y. Jung, H. L. Ko, J. K. Kim, S. M. Park, D. H. Jung, C. A. Park, Y. W. Kim, S. K. Ku, I. J. Cho and S. C. Kim, Tryptanthrin prevents oxidative stress-mediated apoptosis through AMP-activated protein kinase-dependent p38 mitogen-activated protein kinase activation, Arch. Pharm. Res.40 (2017) 1071–1086; https://doi.org/10.1007/s12272-017-0947-510.1007/s12272-017-0947-5
  26. 26. S. Lee, D. C. Kim, H. Y. Baek, K. D. Lee, Y. C. Kim and H. Oh, Anti-neuroinflammatory effects of tryptanthrin from Polygonum tinctorium Lour. in lipopolysaccharide-stimulated BV2 microglial cells, Arch. Pharm. Res.41 (2018) 419–430; https://doi.org/10.1007/s12272-018-1020-810.1007/s12272-018-1020-8
  27. 27. S. T. Yu, J. W. Chern, T. M. Chen, Y. F. Chiu, H. T. Chen and Y. H. Chen, Cytotoxicity and reversal of multidrug resistance by tryptanthrin-derived indoloquinazolines, Acta Pharmacol. Sin.31 (2010) 259–264; https://doi.org/10.1038/aps.2009.19810.1038/aps.2009.198
  28. 28. Y. W. Kwon, S. Y. Cheon, S. Y. Park, J. Song and J. H. Lee, Tryptanthrin suppresses the activation of the LPS-treated BV2 microglial cell line via Nrf2/HO-1 antioxidant signaling, Front Cell Neurosci.11 (2017) 18; https://doi.org/10.3389/fncel.2017.0001810.3389/fncel.2017.00018
  29. 29. M. J. Micallef, K. Iwaki, T. Ishihara, S. Ushio, M. Aga, T. Kunikata, S. Koya-Miyata, T. Kimoto, M. Ikeda and M. Kurimoto, The natural plant product tryptanthrin ameliorates dextran sodium sulfate-induced colitis in mice, Int. Immunopharmacol.2 (2002) 565–578; https://doi.org/10.1016/S1567-5769(01)00206-510.1016/S1567-5769(01)00206-5
  30. 30. R. Kaur, S. K. Manjal, R. K. Rawal and K. Kumar, Recent Synthetic and Medicinal Perspectives of Tryptanthrin, Bioorg. Med. Chem.25 (2017) 4533–4552; https://doi.org/10.1016/j.bmc.2017.07.00310.1016/j.bmc.2017.07.003
  31. 31. W. Zhou, Q. F. Zeng, D. Lai, J. L. Cho, X. Y. Zhang and X. C. Shen, Effect of tryptanthrin on proliferation of human breast cancer MCF-7 cells via MAPK signaling pathway, Chin. Pharm. J.54 (2019) 693–698; https://doi.org/10.11669/cpj.2019.09.005
  32. 32. X. M. Liao and K. N. Leung, Tryptanthrin induces growth inhibition and neuronal differentiation in the human neuroblastoma LA-N-1 cells, Chem. Biol. Interact.203 (2013) 512–521; https://doi.org/10.1016/j.cbi.2013.03.00110.1016/j.cbi.2013.03.00123500671
  33. 33. S. Han, D. F. Li, C. M. Wu, X. R. Ma, R. G. Song and Y. Wang, Synthesis and characterization of indolo quinazoline derivatives, Chem. Reagents33 (2011) 883–886; https://doi.org/10.13822/j.cnki.hxsj.2011.10.011
  34. 34. J. H. Feng, D. L. Song, S. Y. Jiang, X. H. Yang, T. T. Ding, H. Zhang, J. M. Luo, J. Liao and Q. Yin, Quercetin restrains TGF-β1-induced epithelial–mesenchymal transition by inhibiting Twist1 and regulating E-cadherin expression, Biochem. Bioph. Res. Commun.498 (2018) 132–138; https://doi.org/10.1016/j.bbrc.2018.02.04410.1016/j.bbrc.2018.02.04429425820
  35. 35. M. Mizui, Natural and modified IL-2 for the treatment of cancer and autoimmune diseases, Clin. Immunol.206 (2019) 63–70; https://doi.org/10.1016/j.clim.2018.11.00210.1016/j.clim.2018.11.00230415086
  36. 36. A. Tang and F. Harding, The challenges and molecular approaches surrounding interleukin-2-based therapeutics in cancer, Cytokine: X1 (2019) 100001; https://doi.org/10.1016/j.cytox.2018.10000110.1016/j.cytox.2018.100001
  37. 37. X. G. Li, P. Lu, B. Li, W. F. Zhang, R. Yang, Y. Chu and K. Y. Luo, Interleukin 2 and interleukin 10 function synergistically to promote CD8+ T cell cytotoxicity, which is suppressed by regulatory T cells in breast cancer, Int. J. Biochem. Cell Biol.87 (2017) 1–7; https://doi.org/doi:10.1016/j.biocel.2017.03.00310.1016/j.biocel.2017.03.003718553428274688
  38. 38. M. H. Mannino, Z. W. Zhu, H. P. Xiao, Q. Bai, M. R. Wakefield and Y. J. Fang, The paradoxical role of IL-10 in immunity and cancer, Cancer Lett.367 (2015) 103–107; https://doi.org/10.1016/j.canlet.2015.07.00910.1016/j.canlet.2015.07.00926188281
  39. 39. R. Liu, H. G. Zheng, W. D. Li, Q. J. Guo, S. L. He, Y. Hirasaki, W. Hou, B. J. Hua, C. H. Li, Y. J. Bao, Y. B. Gao, X. Qi, Y. X. Pei and Y. Zhang, Anti-tumor enhancement of Fei-Liu-Ping ointment in combination with celecoxib via cyclooxygenase-2-mediated lung metastatic inflammatory micro-environment in Lewis lung carcinoma xenograft mouse model, J. Transl. Med.13 (2015) 366; https://doi.org/10.1186/s12967-015-0728-110.1186/s12967-015-0728-1465618426597177
  40. 40. D. Capece, D. Verzella, A. Tessitore, E. Alesse, C. Capalbo and F. Zazzeroni, Cancer secretome and inflammation: The bright and the dark sides of NF-κB, Semin. Cell Dev. Bio.78 (2018) 51–61; https://doi.org/10.1016/j.semcdb.2017.08.00410.1016/j.semcdb.2017.08.00428779979
  41. 41. M. Patel, P. G. Horgan, D. C. McMillan and J. Edwards, NF-κB pathways in the development and progression of colorectal cancer, Transl. Res.197 (2018) 43–56; https://doi.org/10.1016/j.trsl.2018.02.00210.1016/j.trsl.2018.02.00229550444
  42. 42. M. Egue, F. H. R. Gnangnon, M. T. Akele-Akpo and D. M. Parkin, Cancer incidence in Cotonou (Benin), 2014–2016 First results from the cancer Registry of Cotonou, Cancer Epidemiol.59 (2019) 46–50; https://doi.org/10.1016/j.canep.2019.01.00610.1016/j.canep.2019.01.00630685574
  43. 43. L. Su, Y. M. Jiang, Y. Xu, X. Y. Li, W. B. Gao, C. W. Xu, C. Q. Zeng, J. Song, W. C. Weng and W. B. Liang, Xihuang pill promotes apoptosis of Treg cells in the tumor microenvironment in 4T1 mouse breast cancer by upregulating MEKK1/SEK1/JNK1/AP-1 pathway, Biomed. Pharmacother.102 (2018) 1111–1119; https://doi.org/10.1016/j.biopha.2018.03.06310.1016/j.biopha.2018.03.06329710529
DOI: https://doi.org/10.2478/acph-2021-0020 | Journal eISSN: 1846-9558 | Journal ISSN: 1330-0075
Language: English
Page range: 245 - 266
Accepted on: Jun 21, 2020
Published on: Nov 4, 2020
Published by: Croatian Pharmaceutical Society
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year
Related subjects:

© 2020 Qingfang Zeng, Cairong Luo, Junlae Cho, Donna Lai, Xiangchun Shen, Xiaoyan Zhang, Wei Zhou, published by Croatian Pharmaceutical Society
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.