References
- 1. W. T. Cefalu, G. A. Bray, P. D. Home, W. T. Garvey, S. Klein, F. X. Pi-Sunyer, F. B. Hu, I. Raz, L. Van Gaal, B. M. Wolfe and D. H. Ryan, Advances in the science, treatment, and prevention of the disease of obesity: Reflections from a diabetes care editors’ expert forum, Diabetes Care38 (2015) 1567–1582; https://doi.org/10.2337/dc15-108110.2337/dc15-1081
- 2. Global BMI Mortality Collaboration, E. Di Angelantonio, S. Bhupathiraju, D. Wormser, P. Gao, S. Kaptoge, A. Berrington de Gonzalez, B. J. Cairns, R. Huxley, Ch. L. Jackson, G. Joshy, S. Lewington, J. E. Manson, N. Murphy, A. V. Patel, J. M. Samet, M. Woodward, W. Zheng, M. Zhou, N. Bansal, A. Barricarte, B. Carter, J. R. Cerhan, G. D. Smith, X. Fang, O. H. Franco, J. Green, J. Halsey, J. S. Hildebrand, K. J. Jung, R. J. Korda, D. F. McLerran, S. C. Moore, L. M. O’Keeffe, E. Paige, A. Ramond, G. K. Reeves, B. Rolland, C. Sacerdote, N. Sattar, E. Sofianopoulou, J. Stevens, M. Thun, H. Ueshima, L. Yang, Y. D. Yun, P. Willeit, E. Banks, V. Beral, Zh. Chen, S. M. Gapstur, M. J. Gunter, P. Hartge, S. H. Jee, T. H. Lam, R. Peto, J. D. Potter, W. C. Willett, S. G. Thompson, J. Danesh and F. B. Hu, Body-mass index and all-cause mortality: individual-participant-data meta-analysis of 239 prospective studies in four continents, Lancet388 (2016) 776–786; https://doi.org/10.1016/S0140-6736(16)30175-110.1016/S0140-6736(16)30175-1
- 3. F. L. Greenway, Physiological adaptations to weight loss and factors favouring weight regain, Int. J. Obes. (London) 39 (2015) 1188–1196; https://doi.org/10.1038/ijo.2015.5910.1038/ijo.2015.59476692525896063
- 4. C. Langenberg, S. J. Sharp, P. W. Franks, R. A. Scott, P. Deloukas, N. G. Forouhi, P. Froguel, L. C. Groop, T. Hansen, L. Palla, O. Pedersen, M. B. Schulze, M. J. Tormo, E. Wheeler, C. Agnoli, L. Arriola, A. Barricarte, H. Boeing, G. M. Clarke, F. Clavel-Chapelon, E. J. Duell, G. Fagherazzi, R. Kaaks, N. D. Kerrison, T. J. Key, K. T. Khaw, J. Kröger, M. Lajous, A. P. Morris, C. Navarro, P. M. Nilsson, K. Overvad, D. Palli, S. Panico, J. R. Quirós, O. Rolandsson, C. Sacerdote, M. J. Sánchez, N. Slimani, A. M. Spijkerman, R. Tumino, D. L. van der A, Y. T. van der Schouw, I. Barroso, M. I. McCarthy, E. Riboli and N. J. Wareham, Gene-lifestyle interaction and type 2 diabetes: the EPIC interact case-cohort study, PLoS Med.11 (2014) e1001647; https://doi.org/10.1371/journal.pmed.100164710.1371/journal.pmed.1001647402818324845081
- 5. J. Jordan, A. Astrup, S. Engeli, K. Narkiewicz, W. W. Day and N. Finer, Cardiovascular effects of phentermine and topiramate: a new drug combination for the treatment of obesity, J. Hypertens.32 (2014) 1178–1188; https://doi.org/10.1097/HJH.000000000000014510.1097/HJH.0000000000000145401156724621808
- 6. S. K. Malin and S. R. Kashyap, Effects of metformin on weight loss: potential mechanisms, Curr. Opin. Endocrinol. Diabetes Obes.21 (2014) 323–329; https://doi.org/10.1097/MED.000000000000009510.1097/MED.000000000000009525105996
- 7. G. Aubert, V. Mansuy, M. J. Voirol, L. Pellerin and F. P. Pralong, The anorexigenic effects of metformin involve increases in hypothalamic leptin receptor expression, Metabolism60 (2011) 327–334; https://doi.org/10.1016/j.metabol.2010.02.00710.1016/j.metabol.2010.02.00720303124
- 8. J. R. Lindsay, N. A. Duffy, A. M. McKillop, J. Ardill, F. P. O’Harte, P. R. Flatt and P. M. Bell, Inhibition of dipeptidyl peptidase IV activity by oral metformin in type 2 diabetes, Diabet. Med.22 (2005) 654–657; https://doi.org/10.1111/j.1464-5491.2005.01461.x10.1111/j.1464-5491.2005.01461.x15842525
- 9. A. J. Mulherin, A. H. Oh, H. Kim, A. Grieco, L. M. Lauffer and P. L. Brubaker, Mechanisms underlying metformin-induced secretion of glucagon-like peptide-1 from the intestinal L cell, Endocrinology152 (2011) 4610–4619; https://doi.org/10.1210/en.2011-148510.1210/en.2011-148521971158
- 10. W. C. Knowler, E. Barrett-Connor, S. E. Fowler, R. F. Hamman, J. M. Lachin, E. A. Walker and D. M. Nathan, Diabetes Prevention Program Research Group, Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin, N. Engl. J. Med.346 (2002) 393–403; https://doi.org/10.1056/NEJMoa01251210.1056/NEJMoa012512137092611832527
- 11. S. Inoue, M. Egawa, S. Satoh, M. Saito, H. Suzuki, Y. Kumahara, M. Abe, A. Kumagai, Y. Goto and K. Shizume, Clinical and basic aspects of an anorexiant, mazindol, as an antiobesity agent in Japan, Am. J. Clin. Nutr.55 (1992) 199S–202S; https://doi.org/10.1093/ajcn/55.1.199s10.1093/ajcn/55.1.199s
- 12. T. Shiraishi, Mazindol effects on the salivary and gastric acid secretory mechanisms, Nihon Yakurigaku Zasshi (Folia Pharmacol.) 83 (1984) 159–172; https://doi.org/10.1254/fpj.83.15910.1254/fpj.83.159
- 13. G. Slama, A. Selmi, M. Hautecouverture and G. Tchobroutsky, Double blind clinical trial of mazindol on weight loss blood glucose, plasma insulin and serum lipids in overweight diabetic patients, Diabet. Metab.4 (1978) 193–199.
- 14. M. Usami, Y. Seino, S. Nishi, H. Nakahara, M. Ikeda, S. Matsukura and H. Imura, Effect of mazindol on insulin and glucagon secretion in ventromedial hypothalamic obese rats, Nihon Yakurigaku Zasshi (Folia Pharmacol.) 85 (1985) 297–303; https://doi.org/10.1254/fpj.85.29710.1254/fpj.85.297
- 15. L. E. Cruz-Álvarez, A. Zúñiga-Romero, J. C. Huerta-Cruz, F. J. Flores-Murrieta, J. G. Reyes-García, C. I. Araiza-Saldaña and H. I. Rocha-González, Antiallodynic interaction and motor performance of the pregabalin/thioctic acid and pregabalin/α-tocopherol combinations in neonatal streptozotocin-induced diabetic rats, Drug Dev. Res. 79 (2018) 362–369; https://doi.org/10.1002/ddr.2147310.1002/ddr.21473
- 16. S. Pellow, P. Chopin, S. E. File and M. Briley, Validation of open:closed arm entries in an elevated plus-maze as a measure of anxiety in the rat, J. Neurosci. Meth.14 (1985) 149–167; https://doi.org/10.1016/0165-0270(85)90031-710.1016/0165-0270(85)90031-7
- 17. R. J. Tallarida, Drug Synergism and Dose-Effect Data Analysis, Chapman & Hall/CRC, New York 2000, pp. 1–264.10.1201/9781420036107
- 18. R. J. Tallarida, The interaction index: a measure of drug synergism, Pain98 (2002) 163–168; https://doi.org/10.1016/S0304-3959(02)00041-610.1016/S0304-3959(02)00041-6
- 19. T. Yoshida, T. Umekawa, Y. Wakabayashi, K. Yoshimoto, N. Sakane and M. Kondo, Anti-obesity and anti-diabetic effects of mazindol in yellow KK mice: its activating effect on brown adipose tissue thermogenesis, Clin. Exp. Pharmacol. Physiol.23 (1996) 476–482; https://doi.org/10.1111/j.1440-1681.1996.tb02764.x10.1111/j.1440-1681.1996.tb02764.x
- 20. R. C. Lucchetta, B. S. Riveros, R. Pontarolo, R. B. Radominski, M. F. Otuki, F. Fernandez-Llimos and C. J. Correr, Systematic review and meta-analysis of the efficacy and safety of amfepramone and mazindol as a monotherapy for the treatment of obese or overweight patients, Clinics (Sao Paulo) 72 (2017) 317–324; https://doi.org/10.6061/clinics/2017(05)1010.6061/clinics/2017(05)10
- 21. J. Rouru, R. Huupponen, U. Pesonen and M. Koulu, Subchronic treatment with metformin produces anorectic effect and reduces hyperinsulinemia in genetically obese Zucker rats, Life Sci.50 (1992) 1813–1820; https://doi.org/10.1016/0024-3205(92)90066-X10.1016/0024-3205(92)90066-X
- 22. K. N. de Oliveira Santana, D. F. Lelis, K. L. Mendes, J. F. Lula, A. F. Paraíso, J. M. Andrade, J. D. Feltenberger, J. Cota, D. V. da Costa, A. M. de Paula, A. L. Guimarães and S. H. Santos, Metformin reduces lipogenesis markers in obese mice fed a low-carbohydrate and high-fat diet, Lipids51 (2016) 1375–1384; https://doi.org/10.1007/s11745-016-4209-y10.1007/s11745-016-4209-y
- 23. C. M. Ashwell and J. P. McMurtry, Hypoglycemia and reduced feed intake in broiler chickens treated with metformin, Poult. Sci.82 (2003) 106–110; https://doi.org/106-110.10.1093/ps/82.1.10610.1093/ps/82.1.106
- 24. A. Saenz, I. Fernandez-Esteban, A. Mataix, M. Ausejo, M. Roque and D. Moher, Metformin mono-therapy for type 2 diabetes mellitus, Cochrane Database Syst. Rev.3 (2005) CD002966; https://doi.org/10.1002/14651858.CD002966.pub310.1002/14651858.CD002966.pub3
- 25. S. K. Graff, F. M. Mario, P. Ziegelmann and P. M. Spritzer, Effects of orlistat vs. metformin on weight loss-related clinical variables in women with PCOS: systematic review and meta-analysis, Int. J. Clin. Pract.70 (2016) 450–461; https://doi.org/10.1111/ijcp.1278710.1111/ijcp.12787
- 26. F. Hui, Y. Zhang, T. Ren, X. Li, M. Zhao and Q. Zhao, Role of metformin in overweight and obese people without diabetes: a systematic review and network meta-analysis, Eur. J. Clin. Pharmacol.75 (2019) 437–450; https://doi.org/10.1007/s00228-018-2593-310.1007/s00228-018-2593-3
- 27. L. C. Iorio, E. A. Ryan and J. H. Gogerty, Combinations of selected CNS depressants with d-amphetamine or mazindol on food intake and motor activity of rats, Eur. J. Pharmacol.36 (1976) 89–94; https://doi.org/10.1016/0014-2999(76)90260-010.1016/0014-2999(76)90260-0
- 28. Z. L. Kruk and M. R. Zarrindast, Mazindol anorexia is mediated by activation of dopaminergic mechanisms, Br. J. Pharmacol.58 (1976) 367–372; https://doi.org/10.1111/j.1476-5381.1976.tb07713.x10.1111/j.1476-5381.1976.tb07713.x
- 29. N. Shimizu, S. Take, T. Hori and Y. Oomura, Hypothalamic microdialysis of mazindol causes anorexia with increase in synaptic serotonin in rats, Physiol. Behav.49 (1991) 131–134; https://doi.org/10.1016/0031-9384(91)90243-H10.1016/0031-9384(91)90243-H
- 30. R. G. Engstrom, L. A. Kelly and J. H. Gogerty, The effects of 5-hydroxy-5(4’-chlorophenyl)-2,3-di-hydro-5H-imidazo(2,1-a)isoindole(mazindol, SaH 42-548) on the metabolism of brain norepinephrine, Arch. Int. Pharmacodyn. Ther.214 (1975) 308–321.
- 31. S. K. Sikdar, Y. Oomura and A. Inokuchi, Effects of mazindol on rat lateral hypothalamic neurons, Brain Res. Bull.15 (1985) 33–38; https://doi.org/10.1016/0361-9230(85)90058-910.1016/0361-9230(85)90058-9
- 32. S. Inoue, M. Tsuchiya and Y. Takamura, Effects of mazindol on food intake in ventromedial hypothalamic lesioned rats and glucose absorption in rats, Int. J. Obes.11 (1987) 63–69.
- 33. M. J. Kirby and P. Turner, Do „anorectic” drugs produce weight loss by appetite suppression? Lancet1 (1976) 566–567; https://doi.org/10.1016/S0140-6736(76)90360-310.1016/S0140-6736(76)90360-3
- 34. D. Stevanovic, K. Janjetovic, M. Misirkic, L. Vucicevic, M. Sumarac-Dumanovic, D. Micic, V. Starcevic and V. Trajkovic, Intracerebroventricular administration of metformin inhibits ghrelin-induced hypothalamic AMP-kinase signalling and food intake, Neuroendocrinology96 (2012) 24–31; https://doi.org/10.1159/00033396310.1159/000333963
- 35. W. S. Lv, J. P. Wen, L. Li, R. X. Sun, J. Wang, Y. X. Xian, C. X. Cao, Y. L. Wang and Y. Y. Gao, The effect of metformin on food intake and its potential role in hypothalamic regulation in obese diabetic rats, Brain Res.1444 (2012) 11–19; https://doi.org/10.1016/j.brainres.2012.01.02810.1016/j.brainres.2012.01.028
- 36. R. J. Rodgers and A. Dalvi, Anxiety, defence and the elevated plus-maze, Neurosci. Biobehav. Rev.21 (1997) 801–810; https://doi.org/10.1016/S0149-7634(96)00058-910.1016/S0149-7634(96)00058-9
- 37. R. Mattei and E. A. Carlini, Mazindol: anorectic and behavioral effects in female rats, Arch. Int. Pharmacodyn. Ther.330 (1995) 279–287.
- 38. G. Gariepy, D. Nitka and N. Schmitz, The association between obesity and anxiety disorders in the population: a systematic review and meta-analysis, Int. J. Obes. (London) 34 (2010) 407–419; https://doi.org/10.1038/ijo.2009.25210.1038/ijo.2009.252
- 39. D. E. Smith, M. D. Marcus and K. L. Eldredge, Binge eating syndromes: A review of assessment and treatment with an emphasis on clinical application, Behav. Ther.25 (1994) 635–665; https://doi.org/10.1016/S0005-7894(05)80202-310.1016/S0005-7894(05)80202-3
- 40. S. R. Salpeter, N. S. Buckley, J. A. Kahn and E. E. Salpeter, Meta-analysis: metformin treatment in persons at risk for diabetes mellitus, Am. J. Med.121 (2008) 149–157; https://doi.org/10.1016/j.amjmed.2007.09.01610.1016/j.amjmed.2007.09.01618261504