Have a personal or library account? Click to login
Polyethylene oxide matrix tablet swelling evolution: The impact of molecular mass and tablet composition Cover

Polyethylene oxide matrix tablet swelling evolution: The impact of molecular mass and tablet composition

Open Access
|Nov 2020

References

  1. 1. C. J. Kim, Drug release from compressed hydrophilic POLYOX-WSR tablets, J. Pharm. Sci.84 (1995) 303–306; https://doi.org/10.1002/jps.260084030810.1002/jps.2600840308
  2. 2. L. Maggi, R. Bruni and U. Conte, High molecular weight polyethylene oxides (PEOs) as an alternative to HPMC in controlled release dosage forms, Int. J. Pharm.195 (2000) 229–238; https://doi.org/10.1016/S0378-5173(99)00402-010.1016/S0378-5173(99)00402-0
  3. 3. A. Apicella, B. Cappello, M. A. Del Nobile, M. I. La Rotonda, G. Mensitieri and L. Nicolais, Poly (ethylene oxide) (PEO) and different molecular weight PEO blends monolithic devices for drug release, Biomaterials14 (1993) 83–90; https://doi.org/10.1016/0142-9612(93)90215-N10.1016/0142-9612(93)90215-N
  4. 4. P. Draksler, D. Lamešić and B. Janković, Physical properties of polymers used in pharmacy – Do we really know them?, Farm. Vestn.67 (2016) 265–272.
  5. 5. B. Hammouda, D. L. Ho and S. Kline, Insight into clustering in poly(ethylene oxide) solutions, Macromolecules37 (2004) 6932–6937; https://doi.org/10.1021/ma049623d10.1021/ma049623d
  6. 6. D. L. Ho, B. Hammouda and S. R. Kline, Clustering of poly(ethylene oxide) in water revisited, J. Polymer Sci. Part B: Polymer Physics41 (2002) 135–138; https://doi.org/10.1002/polb.1034010.1002/polb.10340
  7. 7. D. Rivero, L. M. Gouveia, A. J. Müller and A. E. Sáez, Shear-thickening behavior of high molecular weight poly(ethylene oxide) solutions, Rheol. Acta.51 (2011) 13–20; https://doi.org/10.1007/s00397-011-0569-710.1007/s00397-011-0569-7
  8. 8. A. S. Hoffman, The origins and evolution of “controlled” drug delivery systems, J. Control. Release132 (2008) 153–163; https://doi.org/10.1016/j.jconrel.2008.08.01210.1016/j.jconrel.2008.08.012
  9. 9. Q. T. Nguyen, E. Favre, Z. H. Ping and J. Néel, Clustering of solvents in membranes and its influence on membrane transport properties, J. Memb. Sci.113 (1996) 137–150; https://doi.org/10.1016/0376-7388(95)00219-710.1016/0376-7388(95)00219-7
  10. 10. J. H. Park and Y. H. Bae, Hydrogels based on poly(ethylene oxide) and poly(tetramethylene oxide) or poly(dimethyl siloxane). II. Physical properties and bacterial adhesion, J. Appl. Polym. Sci. 89 (2003) 1505–1514; https://doi.org/10.1002/app.1221710.1002/app.12217
  11. 11. S. K. Mallapragada and N. A. Peppas, Crystal dissolution-controlled release systems: I. Physical characteristics and modeling analysis, J. Control. Release45 (1997) 87–94; https://doi.org/10.1016/S0168-3659(96)01549-010.1016/S0168-3659(96)01549-0
  12. 12. S. K. Mallapragada, N. A. Peppas and P. Colombo, Crystal dissolution-controlled release systems. II. Metronidazole release from semicrystalline poly(vinyl alcohol) systems, J. Biomed. Mater. Res.36 (1997) 125–130; https://doi.org/10.1002/(SICI)1097-4636(199707)36:1%3C125::AID-JBM15 %3E3.0.CO;2-H
  13. 13. B. Hammouda, Solvation characteristics of a model water-soluble polymer, J. Polym. Sci. Part B Polym. Phys.44 (2006) 3195–3199; https://doi.org/10.1002/polb.2096710.1002/polb.20967
  14. 14. D. Cohn and A. Hotovely-Salomon, Biodegradable multiblock PEO/PLA thermoplastic elastomers: molecular design and properties, Polymer46 (2005) 2068–2075; https://doi.org/10.1016/j.polymer.2005.01.01210.1016/j.polymer.2005.01.012
  15. 15. H. W. Starkweather Jr., Clustering of water in polymers, J. Polym. Sci. Part B Polym. Lett.1 (1963) 133–138; https://doi.org/10.1002/pol.1963.11001030510.1002/pol.1963.110010305
  16. 16. I. Caraballo, Factors affecting drug release from hydroxypropyl methylcellulose matrix systems in the light of classical and percolation theories, Expert Opin. Drug Deliv.7 (2010) 1291–1301; https://doi.org/10.1517/17425247.2010.52819910.1517/17425247.2010.52819920977292
  17. 17. J. D. Bonny and H. Leuenberger, Matrix type controlled release systems: I. Effect of percolation on drug dissolution kinetics, Pharm. Acta Helv.66 (1991) 160–164.
  18. 18. A. Aharony and D. Stauffer, Introduction to Percolation Theory, Revised ed, Taylor & Francis, London, 2003.
  19. 19. T. Gonçalves-Araújo, A. R. Rajabi-Siahboomi and I. Caraballo, Application of percolation theory in the study of an extended release verapamil hydrochloride formulation, Int. J. Pharm.361 (2008) 112–117; https://doi.org/10.1016/j.ijpharm.2008.05.02210.1016/j.ijpharm.2008.05.02218621491
  20. 20. I. Fuertes, A. Miranda, M. Millán and I. Caraballo, Estimation of the percolation thresholds in acyclovir hydrophilic matrix tablets, Eur. J. Pharm. Biopharm.64 (2006) 336–342; https://doi.org/10.1016/j.ejpb.2006.05.00910.1016/j.ejpb.2006.05.00916876392
  21. 21. S. Baumgartner, G. Lahajnar, A. Sepe and J. Kristl, Quantitative evaluation of polymer concentration profile during swelling of hydrophilic matrix tablets using 1H {NMR} and {MRI} methods, Eur. J. Pharm. Biopharm.59 (2005) 299–306; http://doi.org/10.1016/j.ejpb.2004.08.01010.1016/j.ejpb.2004.08.01015661502
  22. 22. Y. Y. Chen, L. P. Hughes, L. F. Gladden and M. D. Mantle, Quantitative ultra-fast MRI of HPMC swelling and dissolution, J. Pharm. Sci.99 (2010) 3462–3472; https://doi.org/10.1002/jps.2211010.1002/jps.2211020229597
  23. 23. P. P. Dorożyński, P. Kulinowski, A. Młynarczyk and G. J. Stanisz, MRI as a tool for evaluation of oral controlled release dosage forms, Drug Discov. Today17 (2012) 110–123; https://doi.org/10.1016/j.drudis.2011.10.02610.1016/j.drudis.2011.10.02622094243
  24. 24. U. Mikac, J. Kristl and S. Baumgartner, Using quantitative magnetic resonance methods to understand better the gel-layer formation on polymer-matrix tablets, Expert Opin. Drug Deliv.8 (2011) 677–692; https://doi.org/10.1517/17425247.2011.56655410.1517/17425247.2011.56655421501097
  25. 25. A. Hu, C. Chen, M. D. Mantle, B. Wolf, L. F. Gladden, A. Rajabi-Siahboomi, S. Missaghi, L. Mason and C. D. Melia, The properties of HPMC:PEO extended release hydrophilic matrices and their response to ionic environments, Pharm. Res. 34 (2017) 941–956; https://doi.org/10.1007/s11095-016-2031-010.1007/s11095-016-2031-0
  26. 26. T. M. Hyde and L. F. Gladden, Simultaneous measurement of water and polymer concentration profiles during swelling of poly(ethylene oxide) using magnetic resonance imaging, Polymer39 (1998) 811–819; http://doi.org/10.1016/S0032-3861(97)00328-510.1016/S0032-3861(97)00328-5
  27. 27. T. Tajiri, S. Morita, R. Sakamoto, M. Suzuki, S. Yamanashi, Y. Ozaki and S. Kitamura, Release mechanisms of acetaminophen from polyethylene oxide/polyethylene glycol matrix tablets utilizing magnetic resonance imaging, Int. J. Pharm.395 (2010) 147–153; https://doi.org/10.1016/j.ijpharm.2010.05.02110.1016/j.ijpharm.2010.05.021
  28. 28. S. Abrahmsén-Alami, A. Körner, I. Nilsson and A. Larsson, New release cell for {NMR} microim-aging of tablets: swelling and erosion of poly(ethylene oxide), J. Pharm. Biomed. Anal. 342 (2007) 105–114; http://doi.org/10.1016/j.ijpharm.2007.05.00510.1016/j.ijpharm.2007.05.005
  29. 29. Q. Zhang, L. Gladden, P. Avalle and M. Mantle, In vitro quantitative 1H and 19F nuclear magnetic resonance spectroscopy and imaging studies of fluvastatinTM in Lescol® XL tablets in a USP-IV dissolution cell, J. Control. Release156 (2011) 345–354; https://doi.org/10.1016/j.jconrel.2011.08.03910.1016/j.jconrel.2011.08.039
  30. 30. C. Dahlberg, S. V. Dvinskikh, M. Schuleit and I. Furó, Polymer swelling, drug mobilization and drug recrystallization in hydrating solid dispersion tablets studied by multinuclear NMR micro-imaging and spectroscopy, Mol. Pharm. 8 (2011) 1247–1256; https://doi.org/10.1021/mp200051e10.1021/mp200051e
  31. 31. C. A. Fyfe and A. I. Blazek, Investigation of hydrogel formation from hydroxypropylmethyl-cellulose (HPMC) by NMR spectroscopy and NMR imaging techniques, Macromolecules30 (1997) 6230–6237; https://doi.org/10.1021/ma970076o10.1021/ma970076o
  32. 32. C. A. Fyfe, H. Grondey, A. I. Blazek-Welsh, S. K. Chopra and B. J. Fahie, {NMR} imaging investigations of drug delivery devices using a flow-through {USP} dissolution apparatus, J. Control. Release68 (2000) 73–83; http://doi.org/10.1016/S0168-3659(00)00237-610.1016/S0168-3659(00)00237-6
  33. 33. L. Maggi, L. Segale, M. L. Torre, E. Ochoa Machiste and U. Conte, Dissolution behaviour of hydro-philic matrix tablets containing two different polyethylene oxides (PEOs) for the controlled release of a water-soluble drug. Dimensionality study, Biomaterials23 (2002) 1113–1119; https://doi.org/10.1016/S0142-9612(01)00223-X10.1016/S0142-9612(01)00223-X
  34. 34. H. D. Bale and P. W. Schmidt, Small-angle X-ray-scattering investigation of submicroscopic porosity with fractal properties, Phys. Rev. Lett.53 (1984) 596–599; https://doi.org/10.1103/PhysRev-Lett.53.596
  35. 35. S. Baumgartner, G. Lahajnar, A. Sepe and J. Kristl, Investigation of the state and dynamics of water in hydrogels of cellulose ethers by1H NMR spectroscopy, AAPS PharmSciTech3 (2002) 86; https://doi.org/10.1208/pt03043610.1208/pt030436275134512916930
  36. 36. B. Narasimhan and N. A. Peppas, Molecular analysis of drug delivery systems controlled by dissolution of the polymer carrier, J. Pharm. Sci.86 (1997) 297–304; https://doi.org/10.1021/js960372z10.1021/js960372z
  37. 37. N. A. Peppas and J. J. Sahlin, A simple equation for the description of solute release. III. Coupling of diffusion and relaxation, Int. J. Pharm.57 (1989) 169–172; https://doi.org/10.1016/0378-5173(89)90306-210.1016/0378-5173(89)90306-2
  38. 38. T. Higuchi, Mechanism of sustained-action medication. Theoretical analysis of rate of release of solid drugs dispersed in solid matrices, J. Pharm. Sci.52 (1963) 1145–1149; https://doi.org/10.1002/jps.260052121010.1002/jps.2600521210
  39. 39. R. W. Korsmeyer, R. Gurny, E. Doelker, P. Buri and N. A. Peppas, Mechanisms of solute release from porous hydrophilic polymers, Int. J. Pharm.15 (1983) 25–35; https://doi.org/10.1016/0378-5173(83)90064-910.1016/0378-5173(83)90064-9
  40. 40. A. Körner, A. Larsson, A. Andersson and L. Piculell, Swelling and polymer erosion for poly(ethylene oxide) tablets of different molecular weights polydispersities, J. Pharm. Sci.99 (2010) 1225–1238; https://doi.org/10.1002/jps.2189210.1002/jps.2189219718760
  41. 41. M. Efentakis and M. Vlachou, Evaluation of high molecular weight poly(oxyethylene) (Polyox) polymer: studies of flow properties and release rates of furosemide and captopril from controlled-release hard gelatin capsules, Pharm. Dev. Technol.5 (2000) 339–46; https://doi.org/10.1081/PDT-10010054910.1081/PDT-100100549
  42. 42. H. Li, R. J. Hardy and X. Gu, Effect of drug solubility on polymer hydration and drug dissolution from polyethylene oxide (PEO) matrix tablets, AAPS PharmSciTech9 (2008) 437–443; https://doi.org/10.1208/s12249-008-9060-x10.1208/s12249-008-9060-x297692418431663
  43. 43. L. Wang, K. Chen, H. Wen, D. Ouyang, X. Li, Y. Gao, W. Pan and X. Yang, Design and evaluation of hydrophilic matrix system containing polyethylene oxides for the zero-order controlled delivery of water-insoluble drugs, AAPS PharmSciTech18 (2017) 82–92; https://doi.org/10.1208/s12249-016-0498-y10.1208/s12249-016-0498-y26883263
  44. 44. C.-J. Kim, Effects of drug solubility, drug loading, and polymer molecular weight on drug release from Polyox tablets, Drug Dev. Ind. Pharm. 24 (1998) 645–651; https://doi.org/10.3109/0363904980908236610.3109/036390498090823669876509
  45. 45. D. H. Choi, J. Y. Lim, S. Shin, W. J. Choi, S. H. Jeong and S. Lee, A novel experimental design method to optimize hydrophilic matrix formulations with drug release profiles and mechanical properties, J. Pharm. Sci.103 (2014) 3083–3094; https://doi.org/10.1002/jps.2408010.1002/jps.2408025055971
  46. 46. J. S. Park, J. Y. Shim, K. V. T. Nguyen, J. S. Park, S. Shin, Y. W. Choi, J. Lee, J.-H. Yoon and S. H. Jeong, A pharma-robust design method to investigate the effect of PEG and PEO on matrix tablets, Int. J. Pharm.393 (2010) 79–87; https://doi.org/10.1016/j.ijpharm.2010.04.00910.1016/j.ijpharm.2010.04.009
  47. 47. P. Draksler, B. Janković, Z. Abramović, Z. Lavrič and A. Meden, Assessment of critical material attributes of polyethylene oxide for formulation of prolonged-release tablets, Drug Dev. Ind. Pharm.45 (2019) 1949–1958; https://doi.org/10.1080/03639045.2019.168999110.1080/03639045.2019.1689991
  48. 48. A. P. Cruz, C. D. Bertol, H. K. Stulzer, F. S. Murakami, F. T. Costella, H. V. A. Rocha and M. A. S. Silva, Swelling, erosion, and release behavior of PEO/primaquine matrix tablets, Pharm. Chem. J. 42 (2008) 413–418; https://doi.org/10.1007/s11094-008-0137-310.1007/s11094-008-0137-3
  49. 49. H. Kojima, K. Yoshihara, T. Sawada, H. Kondo and K. Sako, Extended release of a large amount of highly water-soluble diltiazem hydrochloride by utilizing counter polymer in polyethylene oxides (PEO)/polyethylene glycol (PEG) matrix tablets, Eur. J. Pharm. Biopharm. 70 (2008) 556–562; https://doi.org/10.1016/j.ejpb.2008.05.03210.1016/j.ejpb.2008.05.032
  50. 50. Colorcon, Physico-mechanical characterization of POLYOX for tablet manufacture, 2009.
  51. 51. T. D. Reynolds, S. A. Mitchell and K. M. Balwinski, Investigation of the effect of tablet surface area/volume on drug release from hydroxypropylmethylcellulose controlled-release matrix tablets, Drug Dev. Ind. Pharm. 28 (2002) 457–466; https://doi.org/10.1081/DDC-12000300710.1081/DDC-120003007
  52. 52. S.-U. Choi, J. Lee and Y. W. Choi, Development of a directly compressible poly(ethylene oxide) matrix for the sustained-release of dihydrocodeine bitartrate, Drug Dev. Ind. Pharm.29 (2003) 1045–1052; https://doi.org/10.1081/DDC-12002586310.1081/DDC-120025863
  53. 53. Colorcon, Formulation of Polyox ER matrices for a highly soluble active, 2009.
  54. 54. Q. Zhang, Investigating polymer conformation in poly (ethylene oxide) (PEO) based systems for pharmaceutical applications a Raman spectroscopic study of the hydration process, Department of Applied Physics, Condensed Matter Physics, Chalmers University of Technology, 2011.
  55. 55. A. Rangriz Shokri, T. Babadagli and A. Jafari, A critical analysis of the relationship between statistical- and fractal-fracture-network characteristics and effective fracture-network permeability, SPE Reserv. Eval. Eng.19 (2016) 494–510; https://doi.org/10.2118/181743-PA10.2118/181743-PA
  56. 56. E.-Q. Chen, S.-W. Lee, A. Zhang, B.-S. Moon, P. S. Honigfort, I. Mann, H.-M. Lin, F. W. Harris, S. Z. D. Cheng, B. S. Hsiao and F. Yeh, Isothermal thickening and thinning processes in low molecular weight poly(ethylene oxide) fractions crystallized from the melt: 6. Configurational defects in molecules, Polymer40 (1999) 4543–4551; https://doi.org/10.1016/S0032-3861(99)00069-510.1016/S0032-3861(99)00069-5
  57. 57. The Dow Chemical Company, What is the glass transition temperature of POLYOXTM water-soluble resins?, Dow Answ. Cent.; https://dowservice.custhelp.com/app/answers/detail/a_id/17872 (accessed October 24, 2019).
  58. 58. S. Sant, V. Nadeau and P. Hildgen, Effect of porosity on the release kinetics of propafenone-loaded PEG-g-PLA nanoparticles, J. Control. Release107 (2005) 203–214; https://doi.org/10.1016/j.jconrel.2005.02.01710.1016/j.jconrel.2005.02.01716099525
  59. 59. J. Ma, J. Sun, L. Fan, S. Bai, H. Panezai and Y. Jiao, Fractal evolution of dual pH- and temperature-responsive P(NIPAM-co-AA)@BMMs with bimodal mesoporous silica core and coated-copolymer shell during drug delivery procedure via SAXS characterization, Arab. J. Chem. 13 (2020) 4147–4161; https://doi.org/10.1016/j.arabjc.2019.06.01210.1016/j.arabjc.2019.06.012
DOI: https://doi.org/10.2478/acph-2021-0018 | Journal eISSN: 1846-9558 | Journal ISSN: 1330-0075
Language: English
Page range: 215 - 243
Accepted on: Jun 6, 2020
|
Published on: Nov 4, 2020
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year
Related subjects:

© 2020 Petra Draksler, Urša Mikac, Peter Laggner, Amrit Paudel, Biljana Janković, published by Croatian Pharmaceutical Society
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.