Have a personal or library account? Click to login
Identification of potential COVID-19 main protease inhibitors using structure-based pharmacophore approach, molecular docking and repurposing studies Cover

Identification of potential COVID-19 main protease inhibitors using structure-based pharmacophore approach, molecular docking and repurposing studies

Open Access
|Nov 2020

References

  1. 1. N. Zhu, D. Zhang, W. Wang, X. Li, B. Yang, J. Song, X. Zhao, B. Huang, W. Shi, R. Lu and P. Niu, A novel coronavirus from patients with pneumonia in China, 2019, N. Engl. J. Med. 382 (2020) 727–733; https://doi.org/10.1056/NEJMoa200101710.1056/NEJMoa2001017709280331978945
  2. 2. A. Zumla, J. F. Chan, E. I. Azhar, D. S. Hui and K. Y Yuen, Coronaviruses—drug discovery and therapeutic options, Nat. Rev. Drug Discov. 15 (2016) 327–347; https://doi.org/10.1038/nrd.2015.3710.1038/nrd.2015.37709718126868298
  3. 3. F. He, Y. Deng and W. Li, Coronavirus Disease 2019 (COVID-19): What we know? J. Med. Virol. (2020) (7 pages); https://doi.org/10.1002/jmv.2576610.1002/jmv.25766722834032170865
  4. 4. C. C. Lai, T. P. Shih, W. C. Ko, H. J. Tang and P. R. Hsueh, Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges, Int. J. Antimicrob. Agents55 (2020) Article ID 105924; https://doi.org/10.1016/j.ijantimicag.2020.10592410.1016/j.ijantimicag.2020.105924712780032081636
  5. 5. J. She, J. Jiang, L. Ye, L. Hu, C. Bai and Y. Song, 2019 Novel coronavirus of pneumonia in Wuhan, China: emerging attack and management strategies, Clin.. Transl. Med.9 (2020) Article ID 19; https://doi.org/10.1186/s40169-020-00271-z10.1186/s40169-020-00271-z703326332078069
  6. 6. World Health Organization, Novel Coronavirus (Covid-19): Situation Report, 3. 2020, WHO, Geneve 2020; https://www.who.int/emergencies/diseases/novel-coronavirus-2019?gclid=CjwKCAjwq832BRA5EiwACvCWsSQ_-qAh4z8Z5_gvnayDI2PrSx4poydPpu-pvDZX-k34RQDqn8TgEBoChdkQA-vD_BwE; last access date May 31, 2020
  7. 7. H. A. Rothan and S. N. Byrareddy, The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak, J. Autoimmun.109 (2020) Article ID 102433 (4 pages); https://doi.org/10.1016/j.jaut.2020.10243310.1016/j.jaut.2020.102433712706732113704
  8. 8. S. L. Senanayake, Drug repurposing strategies for COVID-19, Future Drug Discov.2 (2020) (3 pages); https://doi.org/10.4155/fdd-2020-001010.4155/fdd-2020-0010
  9. 9. S. Pushpakom, F. Iorio, P. A. Eyers, K. J. Escott, S. Hopper, A. Wells, A. Doig, T. Guilliams, J. Latimer, C. McNamee and A. Norris, Drug repurposing: progress, challenges and recommendations, Nat. Rev. Drug Discov. 18 (2019) 41–58; https://doi.org/10.1038/nrd.2018.16810.1038/nrd.2018.16830310233
  10. 10. S. G. V. Rosa and W. C. Santos, Clinical trials on drug repositioning for COVID-19 treatment, Rev. Panam. Salud Públ. 44 (2020) e40; https://doi.org/10.26633/RPSP.2020.4010.26633/RPSP.2020.40710528032256547
  11. 11. A. Gaurav, V. Gautam, S. Pereira, J. Alvarez-Leite, F. Vetri, M. Choudhury, D. Pelligrino, P. Sundivakkam, K. Radhakrishnan and A. Krieger, Structure-based three-dimensional pharmacophores as an alternative to traditional methodologies, J. Receptor Ligand Channel Res.7 (2014) 27–38; https://doi.org/10.2147/JRLCR.S4684510.2147/JRLCR.S46845
  12. 12. M. P. Sanders, R. McGuire, L. Roumen, I. J. de Esch, J. de Vlieg, J. P. Klomp and C. de Graaf, From the protein’s perspective: the benefits and challenges of protein structure-based pharmacophore modeling, MedChemComm.3 (2012) 28–38; https://doi.org/10.1039/C1MD00210D10.1039/C1MD00210D
  13. 13. M. Wieder, U. Perricone, T. Seidel, S. Boresch and T. Langer, Comparing pharmacophore models derived from crystal structures and from molecular dynamics simulations, Monatsh. Chem. 147 (2016) 553–563, https://doi.org/10.1007/s00706-016-1674-110.1007/s00706-016-1674-1
  14. 14. M. Arooj, S. Sakkiah, S. Kim, V. Arulalapperumal and K. W. Lee, A combination of receptor-based pharmacophore modeling & QM techniques for identification of human chymase inhibitors. PLoS One8 (2013) e63030; https://doi.org/10.1371/journal.pone.006303010.1371/journal.pone.0063030
  15. 15. Z. Jin, X. Du, Y. Xu, Y. Deng, M. Liu, Y. Zhao, B. Zhang, X. Li, L. Zhang, C. Peng, Y. Duan, J. Yu, L. Wang, K. Yang, F. Liu, R. Jiang, X. Yang, T. You, X. Liu, X. Yang, F. Bai, H. Liu, X. Liu, L. W. Guddat, W. Xu, G. Xiao, C. Qin, Z. Shi, H. Jiang, Z. Rao and H. Yang: Structure of Mpro from SARSCoV-2 and discovery of its inhibitors, Nature5 (2020) (20 pages); https://doi.org/10.1038/s41586-020-2223-y10.1038/s41586-020-2223-y
  16. 16. L. A. Dahabiyeh, E. Y. Abu-rish and M. O. Taha, Inhibition of monoglyceride lipase by proton pump inhibitors: investigation using docking and in vitro experiments, Pharmacol. Rep.72 (2019) 435–442; https://doi.org/10.1007/s43440-019-00013-010.1007/s43440-019-00013-0
  17. 17. L. A. Dahabiyeh, Y. Bustanji and M. O. Taha, The herbicide quinclorac as potent lipase inhibitor: Discovery via virtual screening and in vitro/in vivo validation, Chem. Biol. Drug Des. 93 (2019) 787–797; https://doi.org/10.1111/cbdd.1346310.1111/cbdd.13463
  18. 18. D. J. Diller and K. M. Merz, Jr, High throughput docking for library design and library prioritization, Proteins43 (2001) 113–124; https://doi.org/10.1002/1097-0134(20010501)43:2<113::aidprot1023>3.0.co;2-t
  19. 19. S. N. Rao, M. S. Head, A. Kulkarni and J. M. LaLonde, Validation studies of the site-directed docking program LibDock, J. Chem. Inf. Model.47 (2007) 2159–2171; https://doi.org/10.1021/ci600429910.1021/ci6004299
  20. 20. A. N. Jain, Scoring noncovalent protein-ligand interactions: a continuous differentiable function tuned to compute binding affinities, J. Comput. Aided Mol. Des.10 (1996) 427–440; https://doi.org/10.1007/BF0012447410.1007/BF00124474
  21. 21. A. Krammer, P. D. Kirchhoff, X. Jiang, C. Venkatachalam and M. Waldman, LigScore: a novel scoring function for predicting binding affinities, J. Mol. Graph. Model. 23 (2005) 395–407; https://doi.org/10.1016/j.jmgm.2004.11.00710.1016/j.jmgm.2004.11.007
  22. 22. C. M. Venkatachalam, X. Jiang, T. Oldfield and M. Waldman, LigandFit: a novel method for the shape-directed rapid docking of ligands to protein active sites, J. Mol. Graph. Model. 21 (2003) 289–307; https://doi.org/10.1016/s1093-3263(02)00164-x10.1016/S1093-3263(02)00164-X
  23. 23. D. K. Gehlhaar, D. Bouzida and P. A. Rejto, Reduced dimensionality in ligand-protein structure prediction: covalent inhibitors of serine proteases and design of site-directed combinatorial libraries, ACS Pub.719 (1999); https://doi.org/10.1021/bk-1999-0719.ch01910.1021/bk-1999-0719.ch019
  24. 24. I. Muegge, PMF scoring revisited, J. Med. Chem. 49 (2006) 5895–5902; https://doi.org/10.1021/jm050038s10.1021/jm050038s17004705
  25. 25. I. Muegge and Y. C. Martin, A general and fast scoring function for protein-ligand interactions: a simplified potential approach, J. Med. Chem. 42 (1999) 791–804; https://doi.org/10.1021/jm980536j10.1021/jm980536j10072678
  26. 26. J. Wang, Fast identification of possible drug treatment of coronavirus disease-19 (COVID-19) through computational drug repurposing study, J. Chem. Inf. Model. (2020) (10 pages); https://doi.org/10.1021/acs.jcim.0c0017910.1021/acs.jcim.0c00179719797232315171
  27. 27. A. Farag, P. Wang, M. Ahmed and H. Sadek, Identification of FDA approved drugs targeting COVID-19 virus by structure-based drug repositioning, ChemRxiv. (preprint) (2020); https://doi.org/10.26434/chemrxiv.12049647.v110.26434/chemrxiv.12049647.v1
  28. 28. A. D. Mesecar (Center for Structural Genomics of Infectious Diseases, CSGID), A taxonomically-driven approach to development of potent, broad-spectrum inhibitors of coronavirus main pro-tease including SARS-CoV-2 (COVID-19), to be published; PDB ID 6W63, title: Structure of COVID-19 main protease bound to potent broad-spectrum non-covalent inhibitor X77, 2020; https://doi.org/10.2210/pdb6W63/pdb10.2210/pdb6w63/pdb
  29. 29. J. Meslamani and D. Rognan, Protein-ligand pharmacophores: concept, design and applications, CICSJ Bull. 33 (2015) 27–32; https://doi.org/10.11546/cicsj.33.27
  30. 30. L. Dong, S. Hu and J. Gao, Discovering drugs to treat coronavirus disease 2019 (COVID-19), Drug Discov. Ther.14 (2020) 58–60; https://doi.org/10.5582/ddt.2020.0101210.5582/ddt.2020.0101232147628
  31. 31. E. P. Tchesnokov, J. Y. Feng, D. P. Porter and M. Götte, Mechanism of inhibition of Ebola virus RNA-dependent RNA polymerase by remdesivir, Viruses11 (2019) Article ID 326; https://doi.org/10.3390/v1104032610.3390/v11040326652071930987343
  32. 32. J. A. Al-Tawfiq, A. H. Al-Homoud and Z. A. Memish, Remdesivir as a possible therapeutic option for the COVID-19, Travel. Med. Infect. Dis.34 (2020) Article ID 101615; https://doi.org/10.1016/j.tmaid.2020.10161510.1016/j.tmaid.2020.101615712939132145386
  33. 33. T. Stanković, J. Dinić, A. Podolski-Renić, L. Musso, S. S. Burić, S. Dallavalle and M. Pešić, Dual inhibitors as a new challenge for cancer multidrug resistance treatment, Curr. Med. Chem.26 (2019) 6074–6106; https://doi.org/10.2174/092986732566618060709485610.2174/092986732566618060709485629874992
  34. 34. A. Chandwani and J. Shuter, Lopinavir/ritonavir in the treatment of HIV-1 infection: a review, Ther. Clin. Risk Manag. 4 (2008) 1023–1033; https://doi.org/10.2147/tcrm.s328510.2147/TCRM.S3285
  35. 35. J. Dorward and K. Gbinigie, Lopinavir/ritonavir: A rapid review of effectiveness in COVID-19 (on behalf of the Oxford COVID-19 Evidence Service Team Centre for Evidence-Based Medicine-CEBM); https://www.cebm.net/covid-19/lopinavir-ritonavir-a-rapid-review-of-the-evidence-for-effectiveness-in-treating-covid/; last access date April 14, 2020
  36. 36. B. Cao, Y. Wang, D. Wen, W. Liu, J. Wang, G. Fan, L. Ruan, B Song, Y. Cai, M. Wei, X. Li, J. Xia, N. Chen, J. Xiang, T. Yu, T. Bai, X. Xie, L. Zhang, C. Li, Y. Yuan, H. Chen, H. Li, H. Huang, S. Tu, F. Gong, Y. Liu, Y. Wei, C. Dong, F. Zhou, X. Gu, J. Xu, Z. Liu, Y. Zhang, H. Li, L. Shang, K. Wang, K. Li, X. Zhou, X. Dong, Z. Qu, S. Lu, X. Hu, S. Ruan, S. Luo, J. Wu, L. Peng, F. Cheng, L. Pan, J. Zou, C. Jia, J. Wang, X. Liu, S. Wang, X. Wu, Q. Ge, J. He, H. Zhan, F. Qiu, L. Guo, C. Huang, T. Jaki, F. G. Hayden, P. W. Horby, D. Zhang and C. Wang, A trial of lopinavir-ritonavir in adults hospitalized with severe Covid-19, N. Engl. J. Med. 382 (2020) 1787–1799; https://doi.org/10.1056/NEJMoa200128210.1056/NEJMoa2001282712149232187464
DOI: https://doi.org/10.2478/acph-2021-0016 | Journal eISSN: 1846-9558 | Journal ISSN: 1330-0075
Language: English
Page range: 163 - 174
Accepted on: Jun 2, 2020
|
Published on: Nov 4, 2020
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year
Related subjects:

© 2020 Safa Daoud, Shada J. Alabed, Lina A. Dahabiyeh, published by Croatian Pharmaceutical Society
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.