References
- 1. S. G. Acharya, A. H. Momin and A. V Gajjar, Review of piperine as a bio-enhancer, Am. J. Pharm. Tech. Res. 2 (2012) 32–44.
- 2. J.-J. Lu, J.-L. Bao, X.-P. Chen, M. Huang and Y.-T. Wang, Alkaloids isolated from natural herbs as the anticancer agents, Evidence-based Complement. Altern. Med.2012 (2012) Article ID 485042 (12 pages); https://doi.org/10.1155/2012/48504210.1155/2012/485042
- 3. F. Borrelli, R. Capasso, A. Pinto and A. A. Izzo, Inhibitory effect of ginger (Zingiber officinale) on rat ileal motility in vitro, Life Sci.74 (2004) 2889–2896; https://doi.org/10.1016/j.lfs.2003.10.02310.1016/j.lfs.2003.10.023
- 4. W. Tabuneng, H. Bando and T. Amiya, Studies on the constituents of the crude drug “Piperis Longi Fructus.” On the alkaloids of fruits of Piper longum L., Chem. Pharm. Bull.31 (1983) 3562–3565; https://doi.org/10.1248/cpb.31.356210.1248/cpb.31.3562
- 5. M. Ahmed, M. W. Rahman, M. T. Rahman and C. F. Hossain, Analgesic principle from the bark of Careya arborea, Pharmazie57 (2002) 698–701.
- 6. B. Chopra, A. K. Dhingra, R. P. Kapoor and D. N. Prasad, Piperine and its various physicochemical and biological aspects: a review, Open Chem. J.3 (2016) 75–96; https://doi.org/10.2174/187484220160301007510.2174/1874842201603010075
- 7. G. P. Rédei, Black Pepper (Piper nigrum), in: Encyclopedia of Genetics, Genomics, Proteomics, and Informatics (Ed. G. P. Rédei), 3rd ed., Springer, Dordrecht 2008, pp. 220–220.10.1007/978-1-4020-6754-9_1875
- 8. K. Vasavirama and M. Upender, Piperine: A valuable alkaloid from piper species, Int. J. Pharm. Pharm. Sci.6 (2014) 34–38.
- 9. B. G. Bhat and N. Chandrasekhara, Studies on the metabolism of piperine: absorption, tissue distribution and excretion of urinary conjugates in rats, Toxicology40 (1986) 83–92; https://doi.org/10.1016/0300-483X(86)90048-X10.1016/0300-483X(86)90048-X
- 10. D. Suresh and K. Srinivasan, Tissue distribution & elimination of capsaicin, piperine & curcumin following oral intake in rats, Indian J. Med. Res.131 (2010) 682–691.
- 11. H. Liu, R. Luo, X. Chen, J. Liu, Y. Bi, L. Zheng and X. Wu, Tissue distribution profiles of three antiparkinsonian alkaloids from Piper longum L. in rats determined by liquid chromatography-tandem mass spectrometry, J. Chromatogr. B928 (2013) 78–82; https://doi.org/10.1016/j.jchromb.2013.03.02110.1016/j.jchromb.2013.03.021
- 12. S. Bajad, M. Coumar, R. Khajuria, O. P. Suri and K. L. Bedi, Characterization of a new rat urinary metabolite of piperine by LC/NMR/MS studies, Eur. J. Pharm. Sci.19 (2003) 413–421; https://doi.org/10.1016/S0928-0987(03)00143-X10.1016/S0928-0987(03)00143-X
- 13. Z. Shang, W. Cai, Y. Cao, F. Wang, Z. Wang, J. Lu and J. Zhang, An integrated strategy for rapid discovery and identification of the sequential piperine metabolites in rats using ultra high-performance liquid chromatography/high resolution mass spectrometery, J. Pharm. Biomed. Anal.146 (2017) 387–401; https://doi.org/10.1016/j.jpba.2017.09.01210.1016/j.jpba.2017.09.01228918329
- 14. X. Di, X. Wang, X. Di and Y. Liu, Effect of piperine on the bioavailability and pharmacokinetics of emodin in rats, J. Pharm. Biomed. Anal.115 (2015) 144–149; https://doi.org/10.1016/j.jpba.2015.06.02710.1016/j.jpba.2015.06.02726201645
- 15. R. R. Dalvi and P. S. Dalvi, Differences in the effects of piperine and piperonyl butoxide on hepatic drug-metabolizing enzyme system in rats, Drug Chem. Toxicol.14 (1991) 219–229; https://doi.org/10.3109/0148054910901787810.3109/01480549109017878
- 16. R. K. Reen, D. S. Jamwal, S. C. Taneja, J. L. Koul, R. K. Dubey, F. J. Wiebel and J. Singh, Impairment of UDP-glucose dehydrogenase and glucuronidation activities in liver and small intestine of rat and guinea pig in vitro by piperine, Biochem. Pharmacol.46 (1993) 229–238; https://doi.org/10.1016/0006-2952(93)90408-O10.1016/0006-2952(93)90408-O
- 17. C. K. Atal, R. K. Dubey and J. Singh, Biochemical basis of enhanced drug bioavailability by piperine: evidence that piperine is a potent inhibitor of drug metabolism, J. Pharmacol. Exp. Ther.232 (1985) 258–262.
- 18. B. Burchell, D. W. Nebert, D. R. Nelson, K. W. Bock, T. Iyanagi, P. L. M. Jansen, D. Lancet, G. J. Mulder, J. R. Chowdhury and G. Siest, The UDP glucuronosyltransferase gene super family: suggested nomenclature based on evolutionary divergence, DNA Cell Biol.10 (1991) 487–494; https://doi.org/10.1089/dna.1991.10.48710.1089/dna.1991.10.4871909870
- 19. G. B. Dudhatra, S. K. Mody, M. M. Awale, H. B. Patel, C. M. Modi, A. Kumar, D. R. Kamani and B. N. Chauhan, A comprehensive review on pharmacotherapeutics of herbal bioenhancers, Sci. World J.2012 (2012) Article ID 637953 (33 pages); https://doi.org/10.1100/2012/63795310.1100/2012/637953345826623028251
- 20. R. K. Bhardwaj, H. Glaeser, L. Becquemont, U. Klotz, S. K. Gupta and M. F. Fromm, Piperine, a major constituent of black pepper, inhibits human P-glycoprotein and CYP3A4, J. Pharmacol. Exp. Ther.302 (2002) 645–650; https://doi.org/10.1124/jpet.102.03472810.1124/jpet.102.03472812130727
- 21. P. Haris, V. Mary, M. Haridas and C. Sudarsanakumar, Energetics, thermodynamics, and molecular recognition of piperine with DNA, J. Chem. Inf. Model.55 (2015) 2644–2656; https://doi.org/10.1021/acs.jcim.5b0051410.1021/acs.jcim.5b0051426523930
- 22. H. G. Kim, E. H. Han, W.-S. Jang, J. H. Choi, T. Khanal, B. H. Park, T. P. Tran, Y. C. Chung and H. G. Jeong, Piperine inhibits PMA-induced cyclooxygenase-2 expression through downregulating NF-κB, C/EBP and AP-1 signaling pathways in murine macrophages, Food Chem. Toxicol.50 (2012) 2342–2348; https://doi.org/10.1016/j.fct.2012.04.02410.1016/j.fct.2012.04.02422542552
- 23. R. K. S. Dogra, S. Khanna and R. Shanker, Immunotoxicological effects of piperine in mice, Toxicology196 (2004) 229–236; https://doi.org/10.1016/j.tox.2003.10.00610.1016/j.tox.2003.10.00615036749
- 24. C. P. O. Aguiar, D. C. F. Lopes and R. S. Borges, Influence of piperidine ring on stability and reactivity of piperine, Chem. Data Collect.17 (2018) 138–142; https://doi.org/10.1016/j.cdc.2018.08.01010.1016/j.cdc.2018.08.010
- 25. A. Kumar, I. A. Khan, S. Koul, J. L. Koul, S. C. Taneja, I. Ali, F. Ali, S. Sharma, Z. M. Mirza, M. Kumar, P. L. Sangwan, P. Gupta, N. Thota and G. N. Qazi, Novel structural analogues of piperine as inhibitors of the NorA efflux pump of Staphylococcus aureus, J. Antimicrob. Chemother.61 (2008) 1270–1276; https://doi.org/10.1093/jac/dkn08810.1093/jac/dkn08818334493
- 26. K. Poole, Efflux-mediated multiresistance in Gram-negative bacteria, Clin. Microbiol. Infect.10 (2004) 12–26; https://doi.org/10.1111/j.1469-0691.2004.00763.x10.1111/j.1469-0691.2004.00763.x
- 27. T. Toyoda, L. Shi, S. Takasu, Y.-M. Cho, Y. Kiriyama, A. Nishikawa, K. Ogawa, M. Tatematsu and T. Tsukamoto, Antiinflammatory effects of capsaicin and piperine on Helicobacter pylori-induced chronic gastritis in Mongolian gerbils, Helicobacter21 (2016) 131–42; https://doi.org/10.1111/hel.1224310.1111/hel.12243
- 28. T. Tanaka, Role of apoptosis in the chemoprevention of cancer, J. Exp. Clin. Med.5 (2013) 89–91; https://doi.org/10.1016/j.jecm.2013.04.00110.1016/j.jecm.2013.04.001
- 29. L. Lai, Q. Fu, Y. Liu, K. Jiang, Q. Guo, Q. Chen, B. Yan, Q. Wang and J. Shen, Piperine suppresses tumor growth and metastasis in vitro and in vivo in a 4T1 murine breast cancer model, Acta Pharmacol. Sin.33 (2012) 523–530; https://doi.org/10.1038/aps.2011.20910.1038/aps.2011.209
- 30. G.-Y. Liou and P. Storz, Reactive oxygen species in cancer, Free Radic. Res.44 (2010) 479–496; https://doi.org/10.3109/1071576100366755410.3109/10715761003667554
- 31. G. H. Williams and K. Stoeber, The cell cycle and cancer, J. Pathol.226 (2012) 352–364; https://doi.org/10.1002/path.302210.1002/path.3022
- 32. R. A. Sharma, A. L. Harris, A. G. Dalgleish, W. P. Steward and K. J. O’Byrne, Angiogenesis as a biomarker and target in cancer chemoprevention, Lancet Oncol.2 (2001) 726–732; https://doi.org/10.1016/S1470-2045(01)00586-110.1016/S1470-2045(01)00586-1
- 33. S. V. Ambudkar, C. Kimchi-Sarfaty, Z. E. Sauna and M. M. Gottesman, P-glycoprotein: from genomics to mechanism, Oncogene22 (2003) 7468–7485; https://doi.org/10.1038/sj.onc.120694810.1038/sj.onc.120694814576852
- 34. S. Han, H. Liu, L. Yang, L. Cui and Y. Xu, Piperine (PP) enhanced mitomycin-C (MMC) therapy of human cervical cancer through suppressing Bcl-2 signaling pathway via inactivating STAT3/NF-κB, Biomed. Pharmacother.96 (2017) 1403–1410; https://doi.org/10.1016/j.biopha.2017.11.02210.1016/j.biopha.2017.11.02229169726
- 35. U. H. Park, H. S. Jeong, E. Y. Jo, T. Park, S. K. Yoon, E. J. Kim, J. C. Jeong and S. J. Um, Piperine, a component of black pepper, inhibits adipogenesis by antagonizing PPAR-g activity in 3T3-L1 cells, J. Agric. Food Chem.60 (2012) 3853–3860; https://doi.org/10.1021/jf204514a10.1021/jf204514a22463744
- 36. C. Kharbanda, M. S. Alam, H. Hamid, K. Javed, S. Bano, Y. Ali, A. Dhulap, P. Alam and M. A. Q. Pasha, Novel piperine derivatives with antidiabetic effect as PPAR-g agonists, Chem. Biol. Drug Des.88 (2016) 354–362; https://doi.org/10.1111/cbdd.1276010.1111/cbdd.12760
- 37. T. Miyako, J. Ji-Guang, L. Yun-Fei and N. Sosogu, Effects of piperine on the motility of the isolated guinea-pig ileum: comparison with capsaicin, Eur. J. Pharmacol.186 (1990) 71–77; https://doi.org/10.1016/0014-2999(90)94061-210.1016/0014-2999(90)94061-2
- 38. R. Capasso, A. A. Izzo, F. Borrelli, A. Russo, L. Sautebin, A. Pinto, F. Capasso and N. Mascolo, Effect of piperine, the active ingredient of black pepper, on intestinal secretion in mice, Life Sci.71 (2002) 2311–2317; https://doi.org/10.1016/S0024-3205(02)02019-210.1016/S0024-3205(02)02019-2
- 39. F. N. McNamara, A. Randall and M. J. Gunthorpe, Effects of piperine, the pungent component of black pepper, at the human vanilloid receptor (TRPV1), Br. J. Pharmacol.144 (2005) 781–790; https://doi.org/10.1038/sj.bjp.070604010.1038/sj.bjp.0706040157605815685214
- 40. S. I. H. Taqvi, A. J. Shah and A. H. Gilani, Insight into the possible mechanism of antidiarrheal and antispasmodic activities of piperine, Pharm. Biol.47 (2009) 660–664; https://doi.org/10.1080/1388020090291835210.1080/13880200902918352
- 41. T. M. Abegaz, A. Shehab, E. A. Gebreyohannes, A. S. Bhagavathula and A. A. Elnour, Nonadherence to antihypertensive drugs: A systematic review and meta-analysis, Medicine (Baltimore) 96 (2017) e5641; https://doi.org/10.1097/MD.000000000000564110.1097/MD.0000000000005641528794428121920
- 42. S. Booranasubkajorn, S. Huabprasert, J. Wattanarangsan, P. Chotitham, P. Jutasompakorn, T. Laohapand, P. Akarasereenont and P. Tripatara, Vasculoprotective and vasodilatation effects of herbal formula (Sahatsatara) and piperine in spontaneously hypertensive rats, Phytomedicine24 (2017) 148–156; https://doi.org/10.1016/j.phymed.2016.11.01310.1016/j.phymed.2016.11.01328160856
- 43. A. Azab, A. Nassar and A. N. Azab, Anti-inflammatory activity of natural products, Molecules21 (2016) Article ID 1321 (19 pages); https://doi.org/10.3390/molecules2110132110.3390/molecules21101321627414627706084
- 44. L. Chen, H. Deng, H. Cui, J. Fang, Z. Zuo, J. Deng, Y. Li, X. Wang and L. Zhao, Inflammatory responses and inflammation-associated diseases in organs, Oncotarget9 (2018) 7204–7218; https://doi.org/10.18632/oncotarget.2320810.18632/oncotarget.23208580554829467962
- 45. D. Artis and H. Spits, The biology of innate lymphoid cells, Nature517 (2015) 293–301; https://doi.org/10.1038/nature1418910.1038/nature1418925592534
- 46. A. A. Elkady and S. S. Tawfik, Anti-inflammatory role of piperine against rat lung tissue damage induced by gamma-rays, Int. J. Radiat. Res.16 (2018) 75–84; https://doi.org/10.18869/acadpub.ijrr.16.1.75
- 47. T. Zakerali and S. Shahbazi, Rational druggability investigation toward selection of lead molecules: Impact of the commonly used spices on inflammatory diseases, Assay Drug Dev. Technol.16 (2018) 397–407; https://doi.org/10.1089/adt.2018.85310.1089/adt.2018.853
- 48. M. E. Embuscado, Spices and herbs: Natural sources of antioxidants – A mini review, J. Funct. Foods. 18 (2015) 811–819; https://doi.org/10.1016/j.jff.2015.03.00510.1016/j.jff.2015.03.005
- 49. H. Sies, Oxidative stress, Stress. Physiol. Biochem. Pathol.3 (2019) 153–163; https://doi.org/10.1016/B978-0-12-813146-6.00013-810.1016/B978-0-12-813146-6.00013-8
- 50. R. S. Vijayakumar, D. Surya and N. Nalini, Antioxidant efficacy of black pepper (Piper nigrum L.) and piperine in rats with high fat diet induced oxidative stress, Redox Rep.9 (2004) 105–110; https://doi.org/10.1179/13510000422500474210.1179/135100004225004742
- 51. S. Kappagoda, U. Singh and B. G. Blackburn, Antiparasitic therapy, Mayo Clin. Proc.86 (2011) 561–583; https://doi.org/10.4065/mcp.2011.020310.4065/mcp.2011.0203
- 52. L. Freire-De-Lima, T. S. Ribeiro, G. M. Rocha, B. A. Brandão, A. Romeiro, L. Mendonça-Previato, J. O. Previato, M. E. F. De Lima, T. M. U. De Carvalho and N. Heise, The toxic effects of piperine against Trypanosoma cruzi: Ultrastructural alterations and reversible blockage of cytokinesis in epimastigote forms, Parasitol. Res.102 (2008) 1059–1067; https://doi.org/10.1007/s00436-008-0876-910.1007/s00436-008-0876-9
- 53. F. M. Vieira-Araújo, F. C. Macedo Rondon, Í. G. Pinto Vieira, F. N. Pereira Mendes, J. C. Carneiro de Freitas and S. Maia de Morais, Sinergism between alkaloids piperine and capsaicin with meglumine antimoniate against Leishmania infantum, Exp. Parasitol.188 (2018) 79–82; https://doi.org/10.1016/j.exppara.2018.04.00110.1016/j.exppara.2018.04.001
- 54. A. Kumar, R. P. Raman, K. Kumar, P. K. Pandey, V. Kumar, S. Mohanty and S. Kumar, Antiparasitic efficacy of piperine against Argulus spp. on Carassius auratus (Linn. 1758): In vitro and in vivo study, Parasitol. Res.111 (2012) 2071–2076; https://doi.org/10.1007/s00436-012-3054-z10.1007/s00436-012-3054-z
- 55. M. Primorac, D. Sekulovic and S. Antonic, In vitro determination of the spermicidal activity of plant saponins, Pharmazie40 (1985) 585.
- 56. K. Chakrabarti, S. Pal and A. K. Bhattacharyya, Sperm immobilization activity of Allium sativum L. and other plant extracts, Asian J. Androl.5 (2003) 131–135.
- 57. B. Khillare and T. G. Shrivastav, Spermicidal activity of Azadirachta indica (neem) leaf extract, Contraception68 (2003) 225–229; https://doi.org/10.1016/S0010-7824(03)00165-310.1016/S0010-7824(03)00165-3
- 58. N. K. Lohiya, L. K. Kothari, B. Manivannan, P. K. Mishra and N. Pathak, Human sperm immobilization effect of Carica papaya seed extracts: an in vitro study, Asian J. Androl.2 (2000) 103–109.
- 59. D. Paul, S. Bera, D. Jana, R. Maiti and D. Ghosh, In vitro determination of the contraceptive spermicidal activity of a composite extract of Achyranthes aspera and Stephania hernandifolia on human semen, Contraception73 (2006) 284–288; https://doi.org/10.1016/j.contraception.2005.07.01410.1016/j.contraception.2005.07.01416472572
- 60. K. Souad, S. Ali, A. Mounir and T. M. Mounir, Spermicidal activity of extract from Cestrum parqui, Contraception75 (2007) 152–156; https://doi.org/10.1016/j.contraception.2006.10.00610.1016/j.contraception.2006.10.006
- 61. G. Chinta and L. Periyasamy, Reversible anti-spermatogenic effect of piperine on epididymis and seminal vesicles of albino rats, Drug Res. (Stuttgart) 66 (2016) 420–426; https://doi.org/10.1055/s-0042-10818610.1055/s-0042-108186
- 62. E. Madrigal-Santillán, E. Madrigal-Bujaidar, I. Álvarez-González, M. T. Sumaya-Martínez, J. Gutiérrez-Salinas, M. Bautista, Á. Morales-González, M. G.-L. y González-Rubio, J. L. Aguilar-Faisal and J. A. Morales-González, Review of natural products with hepatoprotective effects, World J. Gastroenterol.20 (2014) 14787–14804; https://doi.org/10.3748/wjg.v20.i40.1478710.3748/wjg.v20.i40.14787
- 63. D. Rathee, A. Kamboj and S. Sidhu, Augmentation of hepatoprotective potential of Aegle marmelos in combination with piperine in carbon tetrachloride model in wistar rats, Chem. Cent. J.12 (2018) Article ID 94 (13 pages); https://doi.org/10.1186/s13065-018-0463-910.1186/s13065-018-0463-9
- 64. E. P. Sabina, A. D. H. Souriyan, D. Jackline and M. K. Rasool, Piperine, an active ingredient of black pepper attenuates acetaminophen–induced hepatotoxicity in mice, Asian Pac. J. Trop. Med.3 (2010) 971–976; https://doi.org/10.1016/S1995-7645(11)60011-410.1016/S1995-7645(11)60011-4
- 65. A. Ghosh, N. Chowdhury and G. Chandra, Plant extracts as potential mosquito larvicides, Indian J. Med. Res.135 (2012) 581–598.
- 66. R. Pavela, Essential oils for the development of eco-friendly mosquito larvicides: A review, Ind. Crops Prod.76 (2015) 174–187; https://doi.org/10.1016/j.indcrop.2015.06.05010.1016/j.indcrop.2015.06.050
- 67. M. Samuel, S. V. Oliver, M. Coetzee and B. D. Brooke, The larvicidal effects of black pepper (Piper nigrum L.) and piperine against insecticide resistant and susceptible strains of Anopheles malaria vector mosquitoes, Parasite Vector. 9 (2016) Article ID 238 (9 pages); https://doi.org/10.1186/s13071-016-1521-610.1186/s13071-016-1521-6484718127117913
- 68. C. W. Olanow, The pathogenesis of cell death in Parkinson’s disease – 2007, Mov. Disord.22 (2007) S335–S342; https://doi.org/10.1002/mds.2167510.1002/mds.2167518175394
- 69. S. Singh and P. Kumar, Neuroprotective potential of curcumin in combination with piperine against 6-hydroxy dopamine induced motor deficit and neurochemical alterations in rats, Inflammopharmacology25 (2017) 69–79; https://doi.org/10.1007/s10787-016-0297-910.1007/s10787-016-0297-927853890
- 70. P. Rinwa and A. Kumar, Quercetin along with piperine prevents cognitive dysfunction, oxidative stress and neuro-inflammation associated with mouse model of chronic unpredictable stress, Arch. Pharm. Res.40 (2017) 1166–1175; https://doi.org/10.1007/s12272-013-0205-410.1007/s12272-013-0205-423856969
- 71. J. Liu, M. Chen, X. Wang, Y. Wang, C. Duan, G. Gao, L. Lu, X. Wu, X. Wang and H. Yang, Piperine induces autophagy by enhancing protein phosphotase 2A activity in a rotenone-induced Parkinson’s disease model, Oncotarget7 (2016) 60823–60843; https://doi.org/10.18632/oncotarget.1166110.18632/oncotarget.11661530861927572322
- 72. H. Wang, J. Liu, G. Gao, X. Wu, X. Wang and H. Yang, Protection effect of piperine and piper-longuminine from Piper longum L. alkaloids against rotenone-induced neuronal injury, Brain Res.1639 (2016) 214–227; https://doi.org/10.1016/j.brainres.2015.07.02910.1016/j.brainres.2015.07.02926232071
- 73. Y. Bi, P.-C. Qu, Q.-S. Wang, L. Zheng, H.-L. Liu, R. Luo, X.-Q. Chen, Y.-Y. Ba, X. Wu and H. Yang, Neuroprotective effects of alkaloids from Piper longum in a MPTP-induced mouse model of Parkinson’s disease, Pharm. Biol.53 (2015) 1516–1524; https://doi.org/10.3109/13880209.2014.99183510.3109/13880209.2014.99183525857256
- 74. W. Yang, Y. H. Chen, H. Liu and H. D. Qu, Neuroprotective effects of piperine on the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinson’s disease mouse model, Int. J. Mol. Med.36 (2015) 1369–1376; https://doi.org/10.3892/ijmm.2015.235610.3892/ijmm.2015.235626648012
- 75. G. Coppola, A. Piccorossi, F. F. Operto and A. Verrotti, Anticonvulsant drugs for generalized tonic-clonic epilepsy, Expert Opin. Pharmacother.18 (2017) 925–936; https://doi.org/10.1080/14656566.2017.132849910.1080/14656566.2017.132849928481729
- 76. G. Wassink, C. A. Lear, K. C. Gunn, J. M. Dean, L. Bennet and A. J. Gunn, Analgesics, sedatives, anticonvulsant drugs, and the cooled brain, Semin. Fetal Neonatal Med.20 (2015) 109–114; https://doi.org/10.1016/j.siny.2014.10.00310.1016/j.siny.2014.10.00325457080
- 77. K. Mao, D. Lei, H. Zhang and C. You, Anticonvulsant effect of piperine ameliorates memory impairment, inflammation and oxidative stress in a rat model of pilocarpine-induced epilepsy, Exp. Ther. Med.13 (2017) 695–700; https://doi.org/10.3892/etm.2016.400110.3892/etm.2016.4001534865328352353
- 78. W. Huang, Z. Chen, Q. Wang, M. Lin, S. Wu, Q. Yan, F. Wu, X. Yu, X. Xie, G. Li, Y. Xu and J. Pan, Piperine potentiates the antidepressant-like effect of trans-resveratrol: involvement of monoaminergic system, Metab. Brain Dis.28 (2013) 585–595; https://doi.org/10.1007/s11011-013-9426-y10.1007/s11011-013-9426-y23943324
- 79. H. Li, S. Krstin, S. Wang and M. Wink, Capsaicin and piperine can overcome multidrug resistance in cancer cells to doxorubicin, Molecules23 (2018) Article ID 557 (11 pages); https://doi.org/10.3390/molecules2303055710.3390/molecules23030557601779629498663
- 80. P. Chonpathompikunlert, J. Wattanathorn and S. Muchimapura, Piperine, the main alkaloid of Thai black pepper, protects against neurodegeneration and cognitive impairment in animal model of cognitive deficit like condition of Alzheimer’s disease, Food Chem. Toxicol.48 (2010) 798–802; https://doi.org/10.1016/j.fct.2009.12.00910.1016/j.fct.2009.12.00920034530
- 81. M. Khalili-Fomeshi, M. G. Azizi, M. R. Esmaeili, M. Gol, S. Kazemi, M. Ashrafpour, A. A. Moghadamnia and S. Hosseinzadeh, Piperine restores streptozotocin-induced cognitive impairments: Insights into oxidative balance in cerebrospinal fluid and hippocampus, Behav. Brain Res.337 (2018) 131–138; https://doi.org/10.1016/j.bbr.2017.09.03110.1016/j.bbr.2017.09.03128939403
- 82. K. Xiao, Y. Li, J. Luo, J. S. Lee, W. Xiao, A. M. Gonik, R. G. Agarwal and K. S. Lam, The effect of surface charge on in vivo biodistribution of PEG-oligocholic acid based micellar nanoparticles, Biomaterials32 (2011) 3435–3446; https://doi.org/10.1016/j.biomaterials.2011.01.02110.1016/j.biomaterials.2011.01.021305517021295849
- 83. M. Reza Mozafari, C. Johnson, S. Hatziantoniou and C. Demetzos, Nanoliposomes and their applications in food nanotechnology, J. Liposome Res.18 (2008) 309–327; https://doi.org/10.1080/0898210080246594110.1080/0898210080246594118951288
- 84. S. Dutta and P. Bhattacharjee, Nanoliposomal encapsulates of piperine-rich black pepper extract obtained by enzyme-assisted supercritical carbon dioxide extraction, J. Food Eng.201 (2017) 49–56; https://doi.org/10.1016/j.jfoodeng.2017.01.00610.1016/j.jfoodeng.2017.01.006
- 85. S. Croy and G. Kwon, Polymeric micelles for drug delivery, Curr. Pharm. Des.12 (2006) 4669–4684; https://doi.org/10.2174/13816120677902624510.2174/13816120677902624517168771
- 86. J. Wang, D. Mongayt and V. P. Torchilin, Polymeric micelles for delivery of poorly soluble drugs: Preparation and anticancer activity in vitro of paclitaxel incorporated into mixed micelles based on poly(ethylene glycol)-lipid conjugate and positively charged lipids, J. Drug Target.13 (2005) 73–80; https://doi.org/10.1080/1061186040001193510.1080/10611860400011935163473715848957
- 87. Y. Ding, C. Wang, Y. Wang, Y. Xu, J. Zhao, M. Gao, Y. Ding, J. Peng and L. Li, Development and evaluation of a novel drug delivery: Soluplus® /TPGS mixed micelles loaded with piperine in vitro and in vivo, Drug Dev. Ind. Pharm.44 (2018) 1409–1416; https://doi.org/10.1080/03639045.2018.147227710.1080/03639045.2018.147227729718714
- 88. Y.-C. Yeh, B. Creran and V. M. Rotello, Gold nanoparticles: preparation, properties, and applications in bionanotechnology, Nanoscale4 (2012) 1871–1880; https://doi.org/10.1039/C1NR11188D10.1039/C1NR11188D
- 89. B. G. Anand, D. S. Shekhawat, K. Dubey and K. Kar, Uniform, polycrystalline, and thermostable piperine-coated gold nanoparticles to target insulin fibril assembly, ACS Biomater. Sci. Eng.3 (2017) 1136–1145; https://doi.org/10.1021/acsbiomaterials.7b0003010.1021/acsbiomaterials.7b0003033429588
- 90. S. Jain, S. R. K. Meka and K. Chatterjee, Engineering a piperine eluting nanofibrous patch for cancer treatment, ACS Biomater. Sci. Eng.2 (2016) 1376–1385; https://doi.org/10.1021/acsbiomaterials.6b0029710.1021/acsbiomaterials.6b0029733434991
- 91. I. M. Helander, E.-L. Nurmiaho-Lassila, R. Ahvenainen, J. Rhoades and S. Roller, Chitosan disrupts the barrier properties of the outer membrane of Gram-negative bacteria, Int. J. Food Micro-biol.71 (2001) 235–244; https://doi.org/10.1016/S0168-1605(01)00609-210.1016/S0168-1605(01)00609-2
- 92. S. Gordon, A. Saupe, W. McBurney, T. Rades and S. Hook, Comparison of chitosan nanoparticles and chitosan hydrogels for vaccine delivery, J. Pharm. Pharmacol.60 (2008) 1591–1600; https://doi.org/10.1211/jpp.60.12.000410.1211/jpp.60.12.0004
- 93. Y. Baspinar, M. Üstündas, O. Bayraktar and C. Sezgin, Curcumin and piperine loaded zeinchitosan nanoparticles: Development and in-vitro characterisation, Saudi Pharm. J.26 (2018) 323–334; https://doi.org/10.1016/j.jsps.2018.01.01010.1016/j.jsps.2018.01.010585695329556123
- 94. N. Yadav, S. Khatak and U. V. Singh Sara, Solid lipid nanoparticles – A review, Int. J. Appl. Pharm.4 (2013) 67–72; https://doi.org/10.12691/nnr-4-2-5
- 95. J. Tang, H. Ji, J. Ren, M. Li, N. Zheng and L. Wu, Solid lipid nanoparticles with TPGS and Brij 78: A co-delivery vehicle of curcumin and piperine for reversing P-glycoprotein-mediated multi-drug resistance in vitro, Oncol. Lett.13 (2017) 389–395; https://doi.org/10.3892/ol.2016.542110.3892/ol.2016.5421524510128123572
- 96. A. L. Greenshields, C. D. Doucette, K. M. Sutton, L. Madera, H. Annan, P. B. Yaffe, A. F. Knickle, Z. Dong and D. W. Hoskin, Piperine inhibits the growth and motility of triple-negative breast cancer cells, Cancer Lett.357 (2015) 129–140; https://doi.org/10.1016/j.canlet.2014.11.01710.1016/j.canlet.2014.11.01725444919
- 97. P. B. Yaffe, M. R. Power Coombs, C. D. Doucette, M. Walsh and D. W. Hoskin, Piperine, an alkaloid from black pepper, inhibits growth of human colon cancer cells via G1 arrest and apoptosis triggered by endoplasmic reticulum stress, Mol. Carcinog.54 (2015) 1070–1085; https://doi.org/10.1002/mc.2217610.1002/mc.2217624819444
- 98. V. Da Silva Cardoso, A. B. Vermelho, C. A. R. de Lima, J. M. de Oliveira, M. E. F. de Lima, L. H. P. da Silva, G. M. Direito and M. Das Graças Miranda Danelli, Antigenotoxic effect of piperine in broiler chickens intoxicated with aflatoxin B1, Toxins (Basel) 8 (2016) Article ID 316 (14 pages); https://doi.org/10.3390/toxins811031610.3390/toxins8110316512711327809242
- 99. Y. Deng, S. Sriwiriyajan, A. Tedasen, P. Hiransai and P. Graidist, Anti-cancer effects of Piper nigrum via inducing multiple molecular signaling in vivo and in vitro, J. Ethnopharmacol.188 (2016) 87–95; https://doi.org/10.1016/j.jep.2016.04.04710.1016/j.jep.2016.04.04727155135
- 100. V. Gunasekaran, K. Elangovan and S. Niranjali Devaraj, Targeting hepatocellular carcinoma with piperine by radical-mediated mitochondrial pathway of apoptosis: An in vitro and in vivo study, Food Chem. Toxicol.105 (2017) 106–118; https://doi.org/10.1016/j.fct.2017.03.02910.1016/j.fct.2017.03.02928341137
- 101. L. Si, R. Yang, R. Lin and S. Yang, Piperine functions as a tumor suppressor for human ovarian tumor growth via activation of JNK/p38 MAPK-mediated intrinsic apoptotic pathway, Biosci. Rep.38 (2018) BSR20180503; https://doi.org/10.1042/BSR2018050310.1042/BSR20180503643552529717031
- 102. D. Anissian, M. Ghasemi-Kasman, M. Khalili-Fomeshi, A. Akbari, M. Hashemian, S. Kazemi and A. A. Moghadamnia, Piperine-loaded chitosan-STPP nanoparticles reduce neuronal loss and astrocytes activation in chemical kindling model of epilepsy, Int. J. Biol. Macromol.107 (2018) 973–983; https://doi.org/10.1016/j.ijbiomac.2017.09.07310.1016/j.ijbiomac.2017.09.07328939512
- 103. Y. Dong, Z. Huihui and C. Li, Piperine inhibit inflammation, alveolar bone loss and collagen fibers breakdown in a rat periodontitis model, J. Periodontal Res.50 (2015) 758–765; https://doi.org/10.1111/jre.1226210.1111/jre.1226225736698
- 104. R. A. Gupta, M. N. Motiwala, N. G. Dumore, K. R. Danao and A. B. Ganjare, Effect of piperine on inhibition of FFA induced TLR4 mediated inflammation and amelioration of acetic acid induced ulcerative colitis in mice, J. Ethnopharmacol.164 (2015) 239–246; https://doi.org/10.1016/j.jep.2015.01.03910.1016/j.jep.2015.01.03925683300
- 105. Y. Lu, J. Liu, H. Li and L. Gu, Piperine ameliorates lipopolysaccharide-induced acute lung injury via modulating NF-κB signaling pathways, Inflammation39 (2016) 303–308; https://doi.org/10.1007/s10753-015-0250-x10.1007/s10753-015-0250-x26410851
- 106. Y. A. Samra, H. S. Said, N. M. Elsherbiny, G. I. Liou, M. M. El-Shishtawy and L. A. Eissa, Cepharanthine and piperine ameliorate diabetic nephropathy in rats: role of NF-κB and NLRP3 inflammasome, Life Sci.157 (2016) 187–199; https://doi.org/10.1016/j.lfs.2016.06.00210.1016/j.lfs.2016.06.00227266851
- 107. Q. Q. Mao, Z. Huang, X. M. Zhong, Y. F. Xian and S. P. Ip, Brain-derived neurotrophic factor signalling mediates the antidepressant-like effect of piperine in chronically stressed mice, Behav. Brain Res.261 (2014) 140–145; https://doi.org/10.1016/j.bbr.2013.12.02010.1016/j.bbr.2013.12.02024361910
- 108. G. Chouhan, M. Islamuddin, M. Y. Want, H. A. Ozbak, H. A. Hemeg, D. Sahal and F. Afrin, Leishmanicidal activity of Piper nigrum bioactive fractions is interceded via apoptosis in vitro and substantiated by Th1 immunostimulatory potential in vivo, Front. Microbiol.6 (2015) Article ID 1368 (19 pages); https://doi.org/10.3389/fmicb.2015.0136810.3389/fmicb.2015.01368467271726696979
- 109. N. K. Sethiya, P. Shah, A. Rajpara, P. A. Nagar and S. H. Mishra, Antioxidant and hepatoprotective effects of mixed micellar lipid formulation of phyllanthin and piperine in carbon tetrachlo-ride-induced liver injury in rodents, Food Funct.6 (2015) 3593–3603; https://doi.org/10.1039/c5fo00947b10.1039/C5FO00947B26333006
- 110. K. M. Custódio, J. G. de Oliveira, D. Moterle, K. M. Zepon, J. S. Prophiro and L. A. Kanis, A bio-degradable device for the controlled release of Piper nigrum (Piperaceae) standardized extract to control Aedes aegypti (Diptera, Culicidae) larvae, Rev. Soc. Bras. Med. Trop.49 (2016) 687–692; https://doi.org/10.1590/0037-8682-0340-201610.1590/0037-8682-0340-201628001214
- 111. A. Kumar, D. Sasmal and N. Sharma, Immunomodulatory role of piperine in deltamethrin induced thymic apoptosis and altered immune functions, Environ. Toxicol. Pharmacol.39 (2015) 504–514; https://doi.org/10.1016/j.etap.2014.12.02110.1016/j.etap.2014.12.02125682002
- 112. A. Vurmaz, R. Duman, M. C. Sabaner, T. Ertekin and A. Bilir, Antioxidant effects of piperine in in-vivo chick embryo cataract model induced by steroids, Cutan. Ocul. Toxicol.38 (2019) 182–189; https://doi.org/10.1080/15569527.2019.157052110.1080/15569527.2019.157052130678496
- 113. A. Mishra, J. K. Punia, C. Bladen, G. W. Zamponi and R. K. Goel, Anticonvulsant mechanisms of piperine, a piperidine alkaloid, Channels9 (2015) 317–323; https://doi.org/10.1080/19336950.2015.109283610.1080/19336950.2015.1092836482612526542628
- 114. S. Hua, J. Liu, Y. Zhang, J. Li, X. Zhang, L. Dong, Y. Zhao and X. Fu, Piperine as a neuroprotective functional component in rats with cerebral ischemic injury, Food Sci. Nutr.7 (2019) 3443–3451; https://doi.org/10.1002/fsn3.118510.1002/fsn3.1185684884331762997
- 115. A. Y. Gaafar, H. Yamashita, I. Istiqomah, Y. Kawato, K. Ninomiya, A. Younes and T. Nakai, Comparative immunohistological study on using capsaicin, piperine, and okadaic acid for the transepithelial passage of the inactivated viral and bacterial vaccines in fish, Microsc. Res. Tech. (2020) in press; https://doi.org/10.1002/jemt.2349110.1002/jemt.2349132282995
- 116. B. Khameneh, M. Iranshahy, M. Ghandadi, D. Ghoochi Atashbeyk, B. S. Fazly Bazzaz and M. Iranshahi, Investigation of the antibacterial activity and efflux pump inhibitory effect of co-loaded piperine and gentamicin nanoliposomes in methicillin-resistant Staphylococcus aureus, Drug Dev. Ind. Pharm.41 (2015) 989–994; https://doi.org/10.3109/03639045.2014.92002510.3109/03639045.2014.92002524842547
- 117. P. Jadhav, C. Bothiraja and A. Pawar, Resveratrol-piperine loaded mixed micelles: formulation, characterization, bioavailability, safety and in vitro anticancer activity, RSC Adv.6 (2016) 112795–112805; https://doi.org/10.1039/C6RA24595A10.1039/C6RA24595A
- 118. Y. S. R. Elnaggar, S. M. Etman, D. A. Abdelmonsif and O. Y. Abdallah, Intranasal piperine-loaded chitosan nanoparticles as brain-targeted therapy in Alzheimer’s disease: Optimization, biological efficacy, and potential toxicity, J. Pharm. Sci.104 (2015) 3544–3556; https://doi.org/10.1002/jps.2455710.1002/jps.2455726147711
- 119. M. Pachauri, E. D. Gupta and P. C. Ghosh, Piperine loaded PEG-PLGA nanoparticles: Preparation, characterization and targeted delivery for adjuvant breast cancer chemotherapy, J. Drug Deliv. Sci. Technol.29 (2015) 269–282; https://doi.org/10.1016/j.jddst.2015.08.00910.1016/j.jddst.2015.08.009
- 120. S. S. Katiyar, E. Muntimadugu, T. A. Rafeeqi, A. J. Domb and W. Khan, Co-delivery of rapamycin- and piperine-loaded polymeric nanoparticles for breast cancer treatment, Drug Deliv.23 (2016) 2608–2616; https://doi.org/10.3109/10717544.2015.103966710.3109/10717544.2015.103966726036652
- 121. P. Rathee, A. Kamboj and S. Sidhu, Enhanced oral bioavailability of nisoldipine-piperine-loaded poly-lactic-co-glycolic acid nanoparticles, Nanotechnol. Rev.6 (2017) 517–526; https://doi.org/10.1515/ntrev-2017-015110.1515/ntrev-2017-0151
- 122. Y. Budama-Kilinc, Piperine nanoparticles for topical application: Preparation, characterization, in vitro and in silico evaluation, ChemistrySelect4 (2019) 11693–11700; https://doi.org/10.1002/slct.20190326610.1002/slct.201903266
- 123. C. Li, Q. Wang, T. Ren, Y. Zhang, C. W. K. Lam, M. S. S. Chow and Z. Zuo, Non-linear pharmacokinetics of piperine and its herb-drug interactions with docetaxel in Sprague-Dawley rats, J. Pharm. Biomed. Anal.128 (2016) 286–293; https://doi.org/10.1016/j.jpba.2016.05.04110.1016/j.jpba.2016.05.04127288758
- 124. M. Alkholief, Optimization of lecithin-chitosan nanoparticles for simultaneous encapsulation of doxorubicin and piperine, J. Drug Deliv. Sci. Technol.52 (2019) 204–214; https://doi.org/10.1016/j.jddst.2019.04.01210.1016/j.jddst.2019.04.012
- 125. S. Chen, Q. Li, D. J. McClements, Y. Han, L. Dai, L. Mao and Y. Gao, Co-delivery of curcumin and piperine in zein-carrageenan core-shell nanoparticles: Formation, structure, stability and in vitro gastrointestinal digestion, Food Hydrocoll.99 (2020) Article ID 105334; https://doi.org/10.1016/j.foodhyd.2019.10533410.1016/j.foodhyd.2019.105334
- 126. T. Ren, M. Hu, Y. Cheng, T. L. Shek, M. Xiao, N. J. Ho, C. Zhang, S. S. Y. Leung and Z. Zuo, Pipe-rine-loaded nanoparticles with enhanced dissolution and oral bioavailability for epilepsy control, Eur. J. Pharm. Sci.137 (2019) Article ID 104988; https://doi.org/10.1016/j.ejps.2019.10498810.1016/j.ejps.2019.10498831291598
- 127. L. Ray, R. Karthik, V. Srivastava, S. P. Singh, A. B. Pant, N. Goyal and K. C. Gupta, Efficient anti-leishmanial activity of amphotericin B and piperine entrapped in enteric coated guar gum nanoparticles, Drug Deliv. Transl. Res. (2020) in press (13 pages); https://doi.org/10.1007/s13346-020-00712-910.1007/s13346-020-00712-932016707
- 128. S. Chen, Y. Zhang, J. Qing, Y. Han, D. J. McClements and Y. Gao, Core-shell nanoparticles for co-encapsulation of coenzyme Q10 and piperine: Surface engineering of hydrogel shell around protein core, Food Hydrocoll.103 (2020) Article ID 105651; https://doi.org/10.1016/j.food-hyd.2020.105651
- 129. D. Zhu, W.-G. Zhang, X.-D. Nie, S.-W. Ding, D.-T. Zhang and L. Yang, Rational design of ultra-small photoluminescent copper nano-dots loaded PLGA micro-vessels for targeted co-delivery of natural piperine molecules for the treatment for epilepsy, J. Photochem. Photobiol. B Biol.205 (2020) Article ID 111805; https://doi.org/10.1016/j.jphotobiol.2020.11180510.1016/j.jphotobiol.2020.11180532092661
- 130. Z. B. Bolat, Z. Islek, B. N. Demir, E. N. Yilmaz, F. Sahin and M. H. Ucisik, Curcumin- and piper-ine-loaded emulsomes as combinational treatment approach enhance the anticancer activity of curcumin on HCT116 colorectal cancer model, Front. Bioeng. Biotechnol.8 (2020) Article ID 50; https://doi.org/10.3389/fbioe.2020.0005010.3389/fbioe.2020.00050702603032117930
- 131. L. Slika, A. Moubarak, J. Borjac, E. Baydoun and D. Patra, Preparation of curcumin-poly (allyl amine) hydrochloride based nanocapsules: Piperine in nanocapsules accelerates encapsulation and release of curcumin and effectiveness against colon cancer cells, Mater. Sci. Eng. C109 (2020) Article ID 110550; https://doi.org/10.1016/j.msec.2019.11055010.1016/j.msec.2019.11055032228916
- 132. L. Gorgani, M. Mohammadi, G. D. Najafpour and M. Nikzad, Piperine – The bioactive compound of black pepper: From isolation to medicinal formulations, Compr. Rev. Food Sci. Food Saf.16 (2017) 124–140; https://doi.org/10.1111/1541-4337.1224610.1111/1541-4337.1224633371546
- 133. T. Gao, H. Xue, L. Lu, T. Zhang and H. Han, Characterization of piperine metabolites in rats by ultra-high-performance liquid chromatography with electrospray ionization quadruple time-of-flight tandem mass spectrometry, Rapid Commun. Mass Spectrom.31 (2017) 901–910; https://doi.org/10.1002/rcm.786410.1002/rcm.786428370557