Have a personal or library account? Click to login
Sitagliptin: a potential drug for the treatment of COVID-19? Cover

Sitagliptin: a potential drug for the treatment of COVID-19?

Open Access
|Nov 2020

References

  1. 1. C. Huang, Y. Wang, X. Li, L. Ren, J. Zhao, Y. Hu, L. Zhang, G. Fan, J. Xu and X. Gu, Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China, Lancet395 (2020) 497–506; https://doi.org/10.1016/S0140-673610.1016/S0140-6736(20)30183-5
  2. 2. H. Lu, C. W. Stratton and Y. W. Tang, Outbreak of pneumonia of unknown etiology in Wuhan China: the mystery and the miracle, J. Med. Virol.92 (2020) 401–402; https://doi.org/10.1002/jmv.2567810.1002/jmv.25678716662831950516
  3. 3. P. Colson, J. M. Rolain and D. Raoult, Chloroquine for the 2019 novel coronavirus SARS Cov2, Int. J. Antimicrob. Agents 55 (2020) Article ID 105923 (3 pages); https://doi.org/10.1016/j.ijantimicag.2020.10592310.1016/j.ijantimicag.2020.105923713486632070753
  4. 4. M. Wang, R. Cao, L. Zhang, X. Yang, J. Liu, M. Xu, Z. Shi, Z. Hu, W. Zhong and G. Xiao, Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro, Cell Res.30 (2020) 269–271; https://doi.org/10.1038/s41422-020-0282-010.1038/s41422-020-0282-0705440832020029
  5. 5. W. Ko, J. Rolain, N. Lee, P. Chen, C. Huang and P. Lee, Arguments in favour of remdesivir for treating SARS-CoV-2 infections, Int. J. Antimicrob. Agents (2020) Article ID 105933 (4 pages); https://doi.org/10.1016/j.ijantimicag.2020.10593310.1016/j.ijantimicag.2020.105933713536432147516
  6. 6. N. Vankadari and J. A. Wilce, Emerging WuHan (COVID-19) coronavirus: glycan shield and structure prediction of spike glycoprotein and its interaction with human CD26, Emerg. Microbes Infect.9 (2020) 601–604; https://doi.org/10.1080/22221751.2020.173956510.1080/22221751.2020.1739565710371232178593
  7. 7. W. Song, M. Gui, X. Wang and Y. Xiang, Cryo-EM structure of the SARS coronavirus spike glyco-protein in complex with its host cell receptor ACE2, PLoS Pathog.14 (2018) e1007236 (19 pages); https://doi.org/10.1371/journal.ppat.100723610.1371/journal.ppat.1007236610729030102747
  8. 8. Y. Zhou, Y. Hou, J. Shen, Y. Huang, W. Martin and F. Cheng, Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2, Cell Discov.6 (2020) 1–18; https://doi.org/10.1038/s41421-020-0153-310.1038/s41421-020-0153-3707333232194980
  9. 9. A. A. Al-Qahtani, K. Lyroni, M. Aznaourova, M. Tseliou, M. R. Al-Anazi, M. N. Al-Ahdal, S. Alkahtani, G. Sourvinos and C. Tsatsanis, Middle east respiratory syndrome corona virus spike glycoprotein suppresses macrophage responses via DPP4-mediated induction of IRAK-M and PPARγ, Oncotarget8 (2017) 9053–9066; https://doi.org/10.18632/oncotarget.1475410.18632/oncotarget.14754535471428118607
  10. 10. A. Makdissi, H. Ghanim, M. Vora, K. Green, S. Abuaysheh, A. Chaudhuri, S. Dhindsa and P. Dandona, Sitagliptin exerts an antinflammatory action, J. Clin. Endocrinol. Metab.97 (2012) 3333–3341; https://doi.org/10.1210/jc.2012-154410.1210/jc.2012-1544343158022745245
  11. 11. J. R. Ussher and D. J. Drucker, Cardiovascular biology of the incretin system, Endocr. Rev.33 (2012) 187–215; https://doi.org/10.1210/er.2011-105210.1210/er.2011-1052352878522323472
  12. 12. H. Yanai, Dipeptidyl peptidase-4 inhibitor sitagliptin significantly reduced hepatitis C virus replication in a diabetic patient with chronic hepatitis C virus infection, Hepatobiliary Pancreat. Dis. Int.13 (2014) 556; https://doi.org/10.1016/S1499-3872(14)60308-810.1016/S1499-3872(14)60308-8
  13. 13. M. P. Dubé, E. S. Chan, J. E. Lake, B. Williams, J. Kinslow, A. Landay, R. W. Coombs, M. Floris-Moore, H. J. Ribaudo and K. E. Yarasheski, A randomized, double-blinded, placebo-controlled trial of sitagliptin for reducing inflammation and immune activation in treated and suppressed human immunodeficiency virus infection, Clin. Infect. Dis.69 (2019) 1165–1172; https://doi.org/10.1093/cid/ciy105110.1093/cid/ciy1051674381430535188
  14. 14. M. Liao, Y. Liu, J. Yuan, Y. Wen, G. Xu, J. Zhao, L. Chen, J. Li, X. Wang, F. Wang, L. Liu, S. Zhang and Z. Zhang, The landscape of lung bronchoalveolar immune cells in COVID-19 revealed by single-cell RNA sequencing, medRxiv preprint, posted February 26, 2020 (23 pages); https://doi.org/10.1101/2020.02.23.2002669010.1101/2020.02.23.20026690
  15. 15. P. Shannon, A. Markiel, O. Ozier, N. S. Baliga, J. T. Wang, D. Ramage, N. Amin, B. Schwikowski and T. Ideker, Cytoscape: a software environment for integrated models of biomolecular interaction networks, Genome Res.13 (2013) 2498–2504; https://doi.org/10.1101/gr.123930310.1101/gr.123930340376914597658
  16. 16. D. Szklarczyk, A. L. Gable, D. Lyon, A. Junge, S. Wyder, J. Huerta-Cepas, M. Simonovic, N. T. Doncheva, J. H. Morris, P. Bork, L. J. Jensen and C. V. Mering, STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets, Nucleic Acids Res.47 (2019) D607–D613; https://doi.org/10.1093/nar/gky113110.1093/nar/gky1131632398630476243
  17. 17. A. Chatr-Aryamontri, A. Ceol, L. M. Palazzi, G. Nardelli, M. V. Schneider, L. Castagnoli and G. Cesareni, MINT: the Molecular INTeraction database, Nucleic Acids Res.35 (2007) D572–D574; https://doi.org/10.1093/nar/gkl95010.1093/nar/gkl950175154117135203
  18. 18. S. Peri, J. D. Navarro, T. Z. Kristiansen, R. Amanchy, V. Surendranath, B. Muthusamy, T. Gandhi, K. Chandrika, N. Deshpande and S. Suresh, Human protein reference database as a discovery resource for proteomics, Nucleic Acids Res.32 (2004) D497–D501; https://doi.org/10.1093/nar/gkh07010.1093/nar/gkh07030880414681466
  19. 19. R. Wang, X. Fang, Y. Lu and S. Wang, The PDBbind database: Collection of binding affinities for protein- ligand complexes with known three-dimensional structures, J. Med. Chem.47 (2004) 2977–2980; https://doi.org/10.1021/jm030580l10.1021/jm030580l15163179
  20. 20. L. Salwinski, C. S. Miller, A. J. Smith, F. K. Pettit, J. U. Bowie and D. Eisenberg, The database of interacting proteins: 2004 update, Nucleic Acids Res.32 (2004) D449–D451; https://doi.org/10.1093/nar/gkh08610.1093/nar/gkh08630882014681454
  21. 21. B. J. Breitkreutz, C. Stark, T. Reguly, L. Boucher, A. Breitkreutz, M. Livstone, R. Oughtred, D. H. Lackner, J. Bähler and V. Wood, The BioGRID interaction database: 2008 update, Nucleic Acids Res.36 (2008) D637–D640; https://doi.org/10.1093/nar/gkm100110.1093/nar/gkm1001223887318000002
  22. 22. M. Kanehisa, M. Araki, S. Goto, M. Hattori, M. Hirakawa, M. Itoh, T. Katayama, S. Kawashima, S. Okuda and T. Tokimatsu, KEGG for linking genomes to life and the environment, Nucleic Acids Res.36 (2007) D480–D484; https://doi.org/10.1093/nar/gkm88210.1093/nar/gkm882
  23. 23. D. Croft, A. F. Mundo, R. Haw, M. Milacic, J. Weiser, G. Wu, M. Caudy, P. Garapati, M. Gillespie and M. R. Kamdar, The Reactome pathway knowledgebase, Nucleic Acids Res.42 (2014) D472–D477; https://doi.org/10.1093/nar/gkt110210.1093/nar/gkt1102
  24. 24. I. M. Keseler, J. Collado-Vides, S. Gama-Castro, J. Ingraham, S. Paley, I. T. Paulsen, M. Peralta-Gil and P. D. Karp, EcoCyc: a comprehensive database resource for Escherichia coli, Nucleic Acids Res.33 (2005) D334–D337; https://doi.org/10.1093/nar/gkq114310.1093/nar/gkq1143
  25. 25. S. Krupa, K. Anthony, J. Buchoff, M. Day, T. Hannay and C. Schaefer, Pathway Interaction Database: A cell signaling resource, Nature446 (2007) 153–158; https://doi.org/10.1038/npre.2007.1311.110.1038/npre.2007.1311.1
  26. 26. Gene Ontology Consortium, The Gene Ontology (GO) database and informatics resource, Nucleic Acids Res.32 (2004) D258–D261; https://doi.org/10.1093/nar/gkh03610.1093/nar/gkh036
  27. 27. D. Kim, L. Wang, M. Beconi, G. J. Eiermann, M. H. Fisher, H. He, G. J. Hickey, J. E. Kowalchick, B. Leiting and K. Lyons, (2R)-4-oxo-4-[3-(trifluoromethyl)-5,6-dihydro[1,2,4]triazolo[4,3-a] pyrazin-7(8H)-yl]-1-(2,4,5-trifluorophenyl)butan-2-amine: a potent, orally active dipeptidyl peptidase IV inhibitor for the treatment of type 2 diabetes, J. Med. Chem.48 (2005) 141–151; https://doi.org/10.1021/jm049315610.1021/jm0493156
  28. 28. H. Berman, K. Henrick and H. Nakamura, Announcing the worldwide protein data bank, Nat. Struct. Mol. Biol.10 (2003) 980; https://doi.org/10.1038/nsb1203-98010.1038/nsb1203-980
  29. 29. R. Lu, X. Zhao, J. Li, P. Niu, B. Yang, H. Wu, W. Wang, H. Song, B. Huang and N. Zhu, Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding, Lancet395 (2020) 565–574; https://doi.org/10.1016/S0140-6736(20)30251-810.1016/S0140-6736(20)30251-8
  30. 30. M. Hoffmann, H. Kleine-Weber, N. Krüger, M. Mueller, C. Drosten and S. Pöhlmann, The novel coronavirus 2019 (2019-nCoV) uses the SARS-coronavirus receptor ACE2 and the cellular protease TMPRSS2 for entry into target cells, bioRxiv preprint, posted January 31, 2020 (23 pages); https://doi.org/10.1101/2020.01.31.92904210.1101/2020.01.31.929042
  31. 31. X. Zou, K. Chen, J. Zou, P. Han, J. Hao and Z. Han, Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection, Front. Med. (2020) (8 pages); https://doi.org/10.1007/s11684-020-0754-010.1007/s11684-020-0754-0708873832170560
  32. 32. F. Qi, S. Qian, S. Zhang and Z. Zhang, Single cell RNA sequencing of 13 human tissues identify cell types and receptors of human coronaviruses, Biochem. Biophys. Res. Commun. (2020) (7 pages); https://doi.org/10.1016/j.bbrc.2020.03.04410.1016/j.bbrc.2020.03.044715611932199615
  33. 33. M. Abouelkheir and T. H. El-Metwally, Dipeptidyl peptidase-4 inhibitors can inhibit angiotensin converting enzyme, Eur. J. Pharmacol.862 (2019) Article ID 172638; https://doi.org/10.1016/j.ejphar.2019.17263810.1016/j.ejphar.2019.17263831491403
  34. 34. A. S. Rose, A. R. Bradley, Y. Valasatava, L. M. Duarte, A. Prlić and P. W. Rose, NGL viewer: web-based molecular graphics for large complexes, Bioinformatics34 (2018) 3755–3758; https://doi.org/10.1093/bioinformatics/bty41910.1093/bioinformatics/bty419619885829850778
  35. 35. N. Yang and H.-M. Shen, Targeting the endocytic pathway and autophagy process as a novel therapeutic strategy in COVID-19, Int. J. Biol. Sci.16 (2020) 1724–1731; https://doi.org/10.7150/ijbs.4549810.7150/ijbs.45498709802732226290
  36. 36. H. Wang, P. Yang, K. Liu, F. Guo, Y. Zhang, G. Zhang and C. Jiang, SARS coronavirus entry into host cells through a novel clathrin-and caveolae-independent endocytic pathway, Cell Res.18 (2008) 290–301; https://doi.org/10.1038/cr.2008.1510.1038/cr.2008.15709189118227861
  37. 37. Y. Inoue, N. Tanaka, Y. Tanaka, S. Inoue, K. Morita, M. Zhuang, T. Hattori and K. Sugamura, Clathrin-dependent entry of severe acute respiratory syndrome coronavirus into target cells expressing ACE2 with the cytoplasmic tail deleted, J. Virol.81 (2007) 8722–8729; https://doi.org/10.1128/JVI.00253-0710.1128/JVI.00253-07195134817522231
  38. 38. C. Callebaut, B. Krust, E. Jacotot and A. G. Hovanessian, T cell activation antigen, CD26, as a cofactor for entry of HIV in CD4+ cells, Science262 (1993) 2045–2050; https://doi.org/10.1126/science.790347910.1126/science.79034797903479
DOI: https://doi.org/10.2478/acph-2021-0013 | Journal eISSN: 1846-9558 | Journal ISSN: 1330-0075
Language: English
Page range: 175 - 184
Accepted on: Apr 15, 2020
|
Published on: Nov 4, 2020
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year
Related subjects:

© 2020 Sanaa K. Bardaweel, Rima Hajjo, Dima A. Sabbah, published by Croatian Pharmaceutical Society
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.