Have a personal or library account? Click to login
Investigation of design space for freeze-drying injectable ibuprofen using response surface methodology Cover

Investigation of design space for freeze-drying injectable ibuprofen using response surface methodology

Open Access
|Jul 2020

References

  1. 1. A. R. Fernandes, N. R. Ferreira, J. F. Fangueiro, A. C. Santos, F. J. Veiga, C. Cabral, A. M. Silva and E. B. Souto, Ibuprofen nanocrystals developed by 22 factorial design experiment: A new approach for poorly water-soluble drugs, Saudi Pharm. J.25 (2017) 1117–1124; https://doi.org/10.1016/j.jsps.2017.07.00410.1016/j.jsps.2017.07.004611111230166898
  2. 2. J. Nerurkar, J. W. Beach, M. O. Park and H. W. Jun, Solubility of (±)-ibuprofen and S (+)-ibuprofen in the presence of cosolvents and cyclodextrins, Pharm. Dev. Technol.10 (2005) 413–421; https://doi.org/10.1081/PDT-5444610.1081/PDT-54446
  3. 3. K. Stoyanova, Z. Vinarov and S. Tcholakova, Improving ibuprofen solubility by surfactant-facilitated self-assembly into mixed micelles, J. Drug. Deliv. Sci. Tec.36 (2016) 208–215; https://doi.org/10.1016/j.jddst.2016.10.01110.1016/j.jddst.2016.10.011
  4. 4. M. Preskar, T. Vrbanec, F. Vrečer, P. Šket, J. Plavec and M. Gašperlin, Solubilization of ibuprofen for freeze dried parenteral dosage forms, Acta Pharm.69 (2019) 17–32; https://doi.org/10.2478/acph-2019-000910.2478/acph-2019-000931259719
  5. 5. K. T. Savjani, A. Gajjar and J. K. Savjani, Drug solubility: Importance and enhancement techniques, ISRN Pharm.12 (2012) Article ID 195727; http://dx.doi.org/10.5402/2012/19572710.5402/2012/195727339948322830056
  6. 6. S. M. Patel and M. J. Pikal, Lyophilization process design space, J. Pharm. Sci.102 (2013) 3883–3887; https://doi.org/10.1002/jps.2370310.1002/jps.2370323946165
  7. 7. S. Roy, C. Ruitberg and A. Sethuraman, Troubleshooting during the manufacture of lyophilized drug product – Being prepared for the unexpected, Am. Pharm. Rev.15 (2012).
  8. 8. T. R. M. De Beer, M. Wiggenhorn, A. Hawe, J. C. Kasper, A. Almeida, T. Quinten, W. Friess, G. Winter, C. Vervaet and J. P. Remon, Optimization of a pharmaceutical freeze-dried product and its process using experimental design approach and innovative process analyzers, Talanta83 (2011) 1623–1633; https://doi.org/10.1016/j.talanta.2010.11.05110.1016/j.talanta.2010.11.05121238761
  9. 9. K. Naelepaa, P. Veski, H. Gjelstrup, J. Rantanen and P. Bertelsen, Building quality into a coating process, Pharm. Dev. Technol.15 (2010) 35–45; https://doi.org/10.3109/1083745090288237710.3109/1083745090288237719694502
  10. 10. International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals and Human use, ICH Harmonised Tripartite Guidelines: Pharmaceutical development Q8 (R2), Current Step 4 version, August 2009; https://database.ich.org/sites/default/files/Q8_R2_Guideline.pdf; access date, September 20, 2018.
  11. 11. V. K. Mourya, Y. Choudhari and M. Padame, Quality by Design: Impact of product variables and their interaction on the particle size in lyophilization of sodium fluoride, Soft Nanosci. Let.6 (2016) 1–10; http://dx.doi.org/10.4236/snl.2016.6100110.4236/snl.2016.61001
  12. 12. J. Sundaram, Y-H. M. Shay, S. U. Sane and C. C. Hsu, Design space development for lyophilization using Doe and process modelling, Biopharm. Int.23 (2010) 26–36;
  13. 13. V. R. Koganti, E. Y. Shalaev, M. R. Berry, T. Osterberg, M. Youssef, D. N. Hiebert, F. A. Kanka, M. Nolan, R. Barrett, G. Scalzo, G. Fitzpatrick, N. Fitzgibbon, S. Luthra and L. Zhang, Investigation of design space for freeze-drying: Use of modeling for primary drying segment of a freeze-drying cycle, AAPS PharmSciTech. 12 (2011) 854–861; https://doi.org/10.1208/s12249-011-9645-710.1208/s12249-011-9645-7316726721710335
  14. 14. A. G. Martinez, B. E. Rodrigez, A. P. Roca and A. M. Ruiz, Intravenous ibuprofen for treatment of post-operative pain: A multicenter, double blind, placebo-controlled, randomized clinical trial, PloS One11 (2016) 1–16; https://doi.org/10.1371/journal.pone.015400410.1371/journal.pone.0154004485949327152748
  15. 15. D. Awotwe-Otto, C. Agarabi and M. A. Khan, An integrated process analytical technology (PAT) approach to monitoring the effect of supercooling on lyophilization product and process parameters of model monoclonal antibody formulations, J. Pharm. Sci.103 (2014) 2042–2052; https://doi.org/10.1002/jps.2400510.1002/jps.2400524840395
  16. 16. S. M. Patel, S. L. Nail, M. J. Pikal, R. Geidobler, G. Winter, A. Hawe, J. Davagnino and S. R. Gupta, Lyophilized drug product cake appearance: What is acceptable, J. Pharm. Sci.106 (2017) 1706–1721; http://dx.doi.org/10.1016/j.xphs.2017.03.01410.1016/j.xphs.2017.03.01428341598
  17. 17. J. C. Kasper and W. Friess, The freezing step in lyophilisation: Physico-chemical fundamentals, freezing methods and consequences on process performance and quality attributes of biopharmaceuticals, Eur. J. Pharmaceut. Biopharmaceut.78 (2011) 248–263; http://doi.org/10.1016/j.ejpb.2011.03.01010.1016/j.ejpb.2011.03.01021426937
  18. 18. E. Meister, A significant comparison between collapse and glass transition temperatures, Eur. Pharm. Rev.13 (2008) 73–79.
  19. 19. J. Horn and W. Friess, Detection of collapse and crystallization of saccharide, protein and mannitol formulations by optical fibers in lyophilization, Front. Chem.6 (2018) 1–9; https://doi.org/10.3389/fchem.2018.0000410.3389/fchem.2018.00004579077529435445
  20. 20. G. Assegehegn, E. B.- de la Fuente, J. M. Franco and C. Gallegos, The importance of understanding the freezing step and its impact on freeze-drying process performance, J. Pharm. Sci.108 (2019) 1378–1395; https://doi.org/10.1016/j.xphs.2018.11.03910.1016/j.xphs.2018.11.03930529167
  21. 21. S. M. Patel, C. Bhugra and M. J. Pikal, Reduced Pressure Ice Fog technique for controlled ice nucleation during freeze-drying, AAPS PharmSciTech10 (2009) 1406–1411; https://doi.org/10.1208/s12249-009-9338-710.1208/s12249-009-9338-7279960419937284
  22. 22. W. Abdelwahed, G. Degober and H. Fessi, Freeze-drying of nanocapsules: Impact of annealing on the drying process, Int. J. Pharm.324 (2006) 74–82; https://doi.org/10.016/j.ijpharm.2006.06.047
  23. 23. M. S. Arshad, Application of through-vial impedance spectroscopy as a novel process analytical technology for freeze drying, Phd Thesis, Leicester School of Pharmacy, De Montfort University, 2014; https://www.dora.dmu.ac.uk/xmlui/bitstream/handle/2086/10407/PhD%20Thesis%20So-hail%20Muhammad%20Arshad%20After%20corrections%20KW_JB_WS_GS%20approved.pdf;sequence=1, access date August 2, 2018.
  24. 24. G. Smith, M. S. Arshad, E. Polygalov and I. Ermolina, Through-vial impedance spectroscopy of the mechanisms of annealing in the freeze-drying of maltodextrin: The impact of annealing hold time and temperature on the primary drying rate, J. Pharm. Sci.103 (2014) 1799–1810; https://doi.org/10.1002/jps.2398210.1002/jps.2398224756948
  25. 25. P. Fonte, S. Reis and B. Sarmento, Facts and evidences on the lyophilisation of polymeric nanoparticles for drug delivery, J. Control. Release225 (2016) 75–86; https://doi.org/10.1016/j.jconrel.2016.01.03410.1016/j.jconrel.2016.01.03426805517
  26. 26. X. Tang and M. J. Pikal, Design of freeze-drying processes for pharmaceuticals: practical advice, Pharm. Res.21 (2004) 191–200; https://doi.org/10.1023/b:pham.0000016234.73023.7510.1023/B:PHAM.0000016234.73023.75
  27. 27. X. Lu and M. J. Pikal, Freeze-drying of mannitol-trehalose-sodium chloride-based formulations: The impact of annealing on dry layer resistance to mass transfer and cake structure, Pharm. Dev. Technol.9 (2004) 85–95; https://doi.org/10.1081/PDT-12002742110.1081/PDT-120027421
  28. 28. L. Rey and J. C. May, Freeze Drying/Lyophilization of Pharmaceutical and Biological Products, 3rd ed., Informa Healthcare, New York, London 2011.
  29. 29. G. Smith, E. Polygalov, M. S. Arshad, T. Page, J. Taylor and I. Ermolina, An impedance-based process analytical technology for monitoring the lyophilisation process, Int. J. Pharm.449 (2013) 72–83; http://dx.doi.org/10.1016/j.ijpharm,2013.03.060
  30. 30. J. Frost, Multiple Regression Analysis: Use Adjusted R-Squared and Predicted R-Squared to Include the Correct Number of Variables; https://statisticsbyjim.com/regression/interpret-adjusted-r-squared-predicted-r-squared-regression/; access date November 11, 2019
  31. 31. A. Hayes, R-Squared Definition, Updated May 8, 2019 https://www.investopedia.com/terms/r/r-squared.asp; access date November 11, 2019
  32. 32. S. Raissi and R.-E. Farsani, Statistical process optimization through multi-response surface methodology, Int. J. Math.Comput. Sci.3 (2009) 197–201.
  33. 33. D. Bas and I. H. Boyaci, Modelling and optimization I: Usability of response surface methodology, J. Food Eng.78 (2007) 836–845; https://doi.org/10.1016/j.jfoodeng.2005.11.02410.1016/j.jfoodeng.2005.11.024
DOI: https://doi.org/10.2478/acph-2021-0010 | Journal eISSN: 1846-9558 | Journal ISSN: 1330-0075
Language: English
Page range: 81 - 98
Accepted on: Apr 5, 2020
Published on: Jul 20, 2020
Published by: Croatian Pharmaceutical Society
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year
Related subjects:

© 2020 Maja Preskar, Danijel Videc, Franc Vrečer, Mirjana Gašperlin, published by Croatian Pharmaceutical Society
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.