Have a personal or library account? Click to login
In vitro antioxidant and antityrosinase activities of Manilkara kauki Cover

In vitro antioxidant and antityrosinase activities of Manilkara kauki

Open Access
|Jul 2020

References

  1. 1. J. L. Rees, The genetics of human pigmentary disorders, J. Invest. Dermatol. 131 (2011) E12-E13; https://doi.org/10.1038/skinbio.2011.510.1038/skinbio.2011.522094399
  2. 2. V. J. Hearing, Determination of melanin synthetic pathways, J. Invest. Dermatol. 131 (2011) E8-E11; https://doi.org/10.1038/skinbio.2011.410.1038/skinbio.2011.4694420922094404
  3. 3. C. Couteau and L. Coiffard, Overview of skin whitening agents: drugs and cosmetic products, Cosmetics3 (2016) 27–43; https://doi.org/10.3390/cosmetics303002710.3390/cosmetics3030027
  4. 4. J. F. Hsieh, S. T. Chen and S. L. Cheng, Molecular Profiling of A375 Human Malignant Melanoma Cells Treated with Kojic Acid and Arbutin, Breakthroughs in Melanoma Research, in Breakthroughs in Melanoma Research (Ed. Y. Tanaka), InTech, Shanghai 2011, pp. 533–558.10.5772/20019
  5. 5. S. L. Cheng, R. H. Liu, J. N. Sheu, S. T. Chen, S. Sinchaikul and G. J. Tsay, Toxicogenomics of kojic acid on gene expression profiling of A375 human malignant melanoma cells, Biol. Pharm. Bull. 29 (2006) 655–669; https://doi.org/10.1248/bpb.29.65510.1248/bpb.29.65516595896
  6. 6. T. Pillaiyar, V. Namasivayam, M. Manickam and S. H. Jung, Inhibitors of melanogenesis: an updated review, J. Med. Chem. 61 (2018) 7395–7418; https://doi.org/10.1021/acs.jmedchem.7b0096710.1021/acs.jmedchem.7b0096729763564
  7. 7. P. K. Mukherjee, R. Biswas, A. Sharma, S. Banerjee, S. Biswas and C. K. Katiyar, Validation of medicinal herbs for anti-tyrosinase potential, J. Herb. Med. 14 (2018) 1–16; https://doi.org/10.1016/j.hermed.2018.09.00210.1016/j.hermed.2018.09.002
  8. 8. T. K. Lim, Edible Medicinal and Non-Medicinal Plants, Vol. 6. Fruits, Springer, Dordrecht 2013, pp. 107–109.
  9. 9. C. P. Khare, Indian Medicinal Plants: An Illustrated Dictionary, Springer Verlag, New York 2007, pp. 397–398.10.1007/978-0-387-70638-2
  10. 10. E. A. Ainsworth and K. M. Gillespie, Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent, Nat. Protoc. 2 (2007) 875–877; https://doi.org/10.1038/nprot.2007.10210.1038/nprot.2007.10217446889
  11. 11. B. Tohidi, M. Rahimmalek and A. Arzani, Essential oil composition, total phenolic, flavonoid contents, and antioxidant activity of Thymus species collected from different regions of Iran, Food Chem. 220 (2017) 153–161; https://doi.org/10.1016/j.foodchem.2016.09.20310.1016/j.foodchem.2016.09.20327855883
  12. 12. K. Thaipong, U. Boonprakob, K. Crosby, L. Cisneros-Zevallos and D. H. Byrne, Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts, J. Food Comp. Anal. 19 (2006) 669–675; https://doi.org/10.1016/j.jfca.2006.01.00310.1016/j.jfca.2006.01.003
  13. 13. I. F. F. Benzie and J. J. Strain, The ferric reducing ability of plasma (FRAP) as a measure of “Anti-oxidant power”: The FRAP assay, Anal. Biochem. 239 (1996) 70–76; https://doi.org/10.1006/abio.1996.029210.1006/abio.1996.02928660627
  14. 14. A. Ishihara, Y. Ide, T. Bito, N. Ube, N. Endo, K. Sotome, N. Maekawa, K. Ueno and A. Nakagiri, Novel tyrosinase inhibitors from liquid culture of Neolentinus lepideus, Biosci. Biotechnol. Biochem. 82 (2018) 22–30; https://doi.org/10.1080/09168451.2017.141512510.1080/09168451.2017.141512529297258
  15. 15. V. Kothari, S. Pathan and S. Seshadri, Antioxidant activity of Manilkara zapota and Citrus limon seeds, J. Nat. Remedies10 (2010) 175–180; https://doi.org/10.18311/jnr/2010/259
  16. 16. M. A. Osman, M. A. Aziz, M. R. Habib and M. R. Karim, Antimicrobial investigation on Manil kara zapota (L.) P. Royen, Int. J. Drug Dev. Res. 3 (2011) 185–190.
  17. 17. K. J. Pankaj, S. Prashant, U. Neeraj and S. Yogesh, Evaluation of analgesic activity of Manilkara zapota (leaves), Eur. J. Exp. Biol. 1 (2011) 14–17.
  18. 18. N. M. Fayek, A. R. A. Monem, M. Y. Mossa, M. R. Meselhy and A. H. Shazly, Chemical and biological study of Manilkara zapota (L.) Van Royen leaves (Sapotaceae) cultivated in Egypt, Pharmacogn. Res. 4 (2012) 85–91; https://doi.org/10.4103/0974-8490.9472310.4103/0974-8490.94723332676222518080
  19. 19. N. M. Fayek, A. R. A. Monem, M. Y. Mossa and M. R. Meselhy, New triterpenoid acyl derivatives and biological study of Manilkara zapota (L.) Van Royen fruits, Pharmacogn. Res. 5 (2013) 55–59; https://doi.org/10.4103/0974-8490.11050510.4103/0974-8490.110505368576423798877
  20. 20. F. B. de Almeida, C. P. Fernandes, W. Romao, G. Vanini, H. B. Costa, H. S. Franca, M. G. Santos, J. C. T. Carvalho, D. Q. Falcao and L. Rocha, Secondary metabolites from leaves of Manilkara subsericea (Mart.) Dubard, Pharmacogn. Mag. 11 (2015) S533–S537; https://doi.org/10.4103/0973-1296.17295710.4103/0973-1296.172957478708427013790
  21. 21. M. H. Baky, A. M. Kamal, M. R. Elgindi and E. G. Haggag, A review on phenolic compounds from family Sapotaceae, J. Pharmacogn. Phytochem. 5 (2016) 280–287.
  22. 22. A. Ghasemzadeh and N. Ghasemzadeh, Flavonoids and phenolic acids: role and biochemical activity in plants and human, J. Med. Plants Res. 5 (2011) 6697–6703; https://doi.org/10.5897/JMPR11.140410.5897/JMPR11.1404
  23. 23. S. Kumar and A. K. Pandey, Chemistry and biological activities of flavonoids: an overview, Sci. World J. 2013 (2013) 162750; https://doi.org/10.1155/2013/16275010.1155/2013/162750389154324470791
  24. 24. H. S. Baek, H. S. Rho, J. W. Yoo, S. M. Ahn, J. Lee, M. K. Kim, D. H. Kim and I. S. Chang, The inhibitory effect of new hydroxamic acid derivatives on melanogenesis, Bull. Korean Chem. Soc. 29 (2008) 43–46; https://doi.org/10.5012/bkcs.2008.29.1.04310.5012/bkcs.2008.29.1.043
  25. 25. I. Corradi, E. de Souza, D. Sande and J. A. Takahashi, Correlation between phenolic compounds contents, antityrosinase and antioxidant activities of plant extracts, Chem. Eng. Trans. 64 (2018) 109–114; https://doi.org/10.3303/CET1864019
  26. 26. G. S. Jimenez, C. R. Aquino, L. C. Martinez, K. B. Torres and M. R. Monroy, Antioxidant activity and content of phenolic compounds and flavonoids from Justicia spicigera, J. Biol. Sci. 9 (2009) 629–632; https://doi.org/10.3923/jbs.2009.629.63210.3923/jbs.2009.629.632
  27. 27. A. A. Elzaawely and S. Tawata, Antioxidant activity of phenolic rich fraction obtained from Convolvulus arvensis L. leaves grown in Egypt, Asian J. Crop. Sci. 4 (2012) 32–40; https://doi.org/10.3923/ajcs.2012.32.4010.3923/ajcs.2012.32.40
  28. 28. A. Ghasemzadeh, H. Z. E. Jaafar and A. Rahmat, Effects of solvent type on phenolics and flavonoids content and antioxidant activities in two varieties of young ginger (Zingiber officinale Roscoe) extracts, J. Med. Plants Res. 5 (2011) 1147–1154.
  29. 29. L. Tomsone, Z. Kruma and R. Galoburda, Comparison of different solvents and extraction methods for isolation of phenolic compounds from horseradish roots (Armoracia rusticana), Int. Sch. Sci. Res. Innov. 6 (2012) 236–241; https://doi.org/10.5281/zenodo.1071162
  30. 30. S. B. Iloki-Assanga, L. M. Lewis-Luján, C. L. Lara-Espinoza, A. A. Gil-Salido, D. Fernandez-Angulo, J. L. Rubio-Pino and D. D. Haines, Solvent effects on phytochemical constituent profiles and antioxidant activities, using four different extraction formulations for analysis of Bucida buceras L. and Phoradendron californicum, BMC Res. Notes8 (2015) 396–409; https://doi.org/10.1186/s13104-015-1388-110.1186/s13104-015-1388-1455392426323940
DOI: https://doi.org/10.2478/acph-2021-0009 | Journal eISSN: 1846-9558 | Journal ISSN: 1330-0075
Language: English
Page range: 153 - 162
Accepted on: Apr 3, 2020
|
Published on: Jul 20, 2020
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year
Related subjects:

© 2020 Sirinada Srisupap, Chanya Chaicharoenpong, published by Croatian Pharmaceutical Society
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.