Have a personal or library account? Click to login
Ellagic acid: A potent glyoxalase-I inhibitor with a unique scaffold Cover

Ellagic acid: A potent glyoxalase-I inhibitor with a unique scaffold

Open Access
|Jul 2020

References

  1. 1. P. J. Thornalley, The glyoxalase system: new developments towards functional characterization of a metabolic pathway fundamental to biological life, Biochem. J. 269 (1990) 1–11.
  2. 2. M. Sousa Silva, R. A. Gomes, A. E. N. Ferreira, A. P. Freire and C. Cordeiro, The glyoxalase pathway: the first hundred years… and beyond, Biochem. J. 453 (2013) 1–15; https://doi.org/10.1042/bj2012174310.1042/BJ20121743
  3. 3. A. Rulli, L. Carli, R. Romani, T. Baroni, E. Giovannini, G. Rosi and V. Talesa, Expression of glyoxalase I and II in normal and breast cancer tissues, Breast Cancer Res. Treat. 66 (2001) 67–72; https://doi.org/10.1023/a:101063291912910.1023/A:1010632919129
  4. 4. E. Mearini, R. Romani, L. Mearini, C. Antognelli, A. Zucchi, T. Baroni, M. Porena and V. N. Talesa, Differing expression of enzymes of the glyoxalase system in superficial and invasive bladder carcinomas, Eur. J. Cancer38 (2002) 1946–1950; https://doi.org/10.1016/S0959-8049(02)00236-810.1016/S0959-8049(02)00236-8
  5. 5. P. J. Thornalley, The glyoxalase system in health and disease, Mol. Aspects Med.14 (1993) 287–371; https://doi.org/10.1016/0098-2997(93)90002-U10.1016/0098-2997(93)90002-U
  6. 6. Q. Al-Balas, M. Hassan, B. Al-Oudat, H. Alzoubi, N. Mhaidat and A. Almaaytah, Generation of the first structure-based pharmacophore model containing a selective “zinc binding group” feature to identify potential glyoxalase-I inhibitors, Molecules17 (2012) 13740–13758; https://doi.org/10.3390/molecules17121374010.3390/molecules171213740626817123174893
  7. 7. A. N. Al-Shar’i, M. Hassan, Q. Al-Balas and A. Almaaytah, Identification of possible glyoxalase II inhibitors as anticancer agents by a customized 3D structure-based pharmacophore model, Jordan J. Pharm. Sci. 8 (2015) 83–103.10.12816/0025734
  8. 8. A. D. Cameron, B. Olin, M. Ridderström, B. Mannervik and T. A. Jones, Crystal structure of human glyoxalase I - evidence for gene duplication and 3D domain swapping, EMBO J. 16 (1997) 3386–3395; https://doi.org/10.1093/emboj/16.12.338610.1093/emboj/16.12.338611699649218781
  9. 9. Q. A. Al-Balas, M. A. Hassan, N. A. Al-Shar’i, N. M. Mhaidat, A. M. Almaaytah, F. M. Al-Mahasneh, and I. H. Isawi, Novel glyoxalase-I inhibitors possessing a “zinc-binding feature” as potential anti-cancer agents, Drug Des. Dev. Ther.10 (2016) 2623–2629; https://doi.org/10.2147/DDDT.S11099710.2147/DDDT.S110997499325727574401
  10. 10. Q. A. Al-Balas, A. M. Hassan, G. A. Al Jabal, N. A. Al-Shar’i, A. M. Almaaytah and T. El-Elimat, Novel thiazole carboxylic acid derivatives possessing a “zinc binding feature” as potential human glyoxalase-I inhibitors, Lett. Drug Des. Discov.14 (2017) 1324–1334; https://doi.org/10.2174/157018081466617030612095410.2174/1570180814666170306120954
  11. 11. Q. A. Al-Balas, M. A. Hassan, N. A. Al-Shar’i, T. El-Elimat and A. M. Almaaytah, Computational and experimental exploration of the structure–activity relationships of flavonoids as potent glyoxalase-I inhibitors, Drug Dev. Res. 79 (2018) 58–69; https://doi.org/10.1002/ddr.2142110.1002/ddr.2142129285772
  12. 12. Q. Al-Balas, N. Al-Shar’i, K. Banisalman, M. Hassan, G. A. Jabal and A. Almaaytah, Design, synthesis and biological evaluation of potential novel zinc binders targeting human glyoxalase-I; A validated target for cancer treatment, Jordan J. Pharm. Sci. 11 (2018) 25–37.
  13. 13. Q. A. Al-Balas, M. A. Hassan, N. A. Al-Shar’i, G. A. Al Jabal and A. M. Almaaytah, Recent advances in glyoxalase-I inhibition, Mini-Rev. Med. Chem.19 (2019) 281–291; https://doi.org/10.2174/138955751866618100914123110.2174/138955751866618100914123130306863
  14. 14. N. A. Al-Shar’i, Q. A. Al-Balas, R. A. Al-Waqfi, M. A. Hassan, A. E. Alkhalifa and N. M. Ayoub, Discovery of a nanomolar inhibitor of the human glyoxalase-I enzyme using structure-based polypharmacophore modelling and molecular docking, J. Comput. Aid. Mol. Des. 33 (2019) 799–815; https://doi.org/10.1007/s10822-019-00226-810.1007/s10822-019-00226-831630312
  15. 15. N. A. Al-Shar’i, E. K. Al-Rousan, L. I. Fakhouri, Q. A. Al-Balas and M. A. Hassan, Discovery of a nanomolar glyoxalase-I inhibitor using integrated ligand-based pharmacophore modeling and molecular docking, Med. Chem. Res. 29 (2020) 356–376; https://doi.org/10.1007/s00044-019-02486-310.1007/s00044-019-02486-3
  16. 16. B. R. Brooks, C. L. Brooks, A. D. MacKerell, L. Nilsson, R. J. Petrella, B. Roux, Y. Won, G. Archontis, C. Bartels, S. Boresch, A. Caflisch, L. Caves, Q. Cui, A. R. Dinner, M. Feig, S. Fischer, J. Gao, M. Hodoscek, W. Im, K. Kuczera, T. Lazaridis, J. Ma, V. Ovchinnikov, E. Paci, R. W. Pastor, C. B. Post, J. Z. Pu, M. Schaefer, B. Tidor, R. M. Venable, H. L. Woodcock, X. Wu, W. Yang, D. M. York and M. Karplus, CHARMM: The biomolecular simulation program, J. Comput. Chem. 30 (2009) 1545–1614; https://doi.org/10.1002/jcc.2128710.1002/jcc.21287281066119444816
  17. 17. M. S. Lee, M. Feig, F. R. Salsbury and C. L. Brooks, New analytic approximation to the standard molecular volume definition and its application to generalized Born calculations, J. Comput. Chem. 24 (2003) 1348–1356; https://doi.org/doi:10.1002/jcc.1027210.1002/jcc.1027212827676
  18. 18. P. Mark and L. Nilsson, Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K, J. Phys. Chem. A105 (2001) 9954–9960; https://doi.org/10.1021/jp003020w10.1021/jp003020w
  19. 19. I. Štich, R. Car, M. Parrinell and S. Baroni, Conjugate gradient minimization of the energy functional: A new method for electronic structure calculation, Phys. Rev. B39 (1989) 4997–5004; https://doi.org/10.1103/PhysRevB.39.499710.1103/PhysRevB.39.4997
  20. 20. G. Wu, D. H. Robertson, C. L. Brooks and M. Vieth, Detailed analysis of grid-based molecular docking: A case study of CDOCKER—A CHARMm-based MD docking algorithm, J. Comput. Chem. 24 (2003) 1549–1562; https://doi.org/10.1002/jcc.1030610.1002/jcc.1030612925999
  21. 21. R. Takasawa, H. Akahane, H. Tanaka, N. Shimada, T. Yamamoto, H. Uchida-Maruki, M. Sai, A. Yoshimori and S.-i. Tanuma, Piceatannol, a natural trans-stilbene compound, inhibits human glyoxalase I, Bioorg. Med. Chem. Lett.27 (2017) 1169–1174; https://doi.org/10.1016/j.bmcl.2017.01.07010.1016/j.bmcl.2017.01.07028169168
  22. 22. A. Z. Simić, T. Ž. Verbić, M. N. Sentić, M. P. Vojić, I. O. Juranić and D. D. Manojlović, Study of ellagic acid electro-oxidation mechanism, Monatsh. Chem. Chem. Mon. 144 (2013) 121–128; https://doi.org/10.1007/s00706-012-0856-810.1007/s00706-012-0856-8
  23. 23. Z. Marković, D. Milenković, J. Đorović, J. M. Dimitrić Marković, B. Lučić and D. Amić, A DFT and PM6 study of free radical scavenging activity of ellagic acid, Monatsh. Chem. Chem. Mon.144 (2013) 803–812; https://doi.org/10.1007/s00706-013-0949-z10.1007/s00706-013-0949-z
  24. 24. Y. Yao, G. Lin, Y. Xie, P. Ma, G. Li, Q. Meng and T. Wu, Preformulation studies of myricetin: a natural antioxidant flavonoid, Pharmazie69 (2014) 19–26.
  25. 25. R. S. Mulliken, Electronic population analysis on LCAO–MO molecular wave functions. I, J. Chem. Phys. 23 (1955) 1833–1840; https://doi.org/10.1063/1.174058810.1063/1.1740588
  26. 26. F. L. Hirshfeld, Bonded-atom fragments for describing molecular charge densities, Theor. Chim. Acta44 (1977) 129–138; https://doi.org/10.1007/bf0054909610.1007/BF00549096
  27. 27. H. F. P. Martins, J. P. Leal, M. T. Fernandez, V. H. C. Lopes and M. N. D. S. Cordeiro, Toward the prediction of the activity of antioxidants: experimental and theoretical study of the gas-phase acidities of flavonoids, J. Am. Soc. Mass Spectrom. 15 (2004) 848–861; https://doi.org/10.1016/j.jasms.2004.02.00710.1016/j.jasms.2004.02.007
  28. 28. G. Günther, E. Berríos, N. Pizarro, K. Valdés, G. Montero, F. Arriagada and J. Morales, Flavonoids in microheterogeneous media, relationship between their relative location and their reactivity towards singlet oxygen, PLoS ONE10 (2015) e0129749; https://doi.org/10.1371/journal.pone.012974910.1371/journal.pone.0129749
  29. 29. B. Delley, An all-electron numerical method for solving the local density functional for polyatomic molecules, J. Chem. Phys.92 (1990) 508–517; https://doi.org/10.1063/1.45845210.1063/1.458452
  30. 30. T. Lengauer and M. Rarey, Computational methods for biomolecular docking, Curr. Opin. Struct. Biol.6 (1996) 402–406; https://doi.org/10.1016/S0959-440X(96)80061-310.1016/S0959-440X(96)80061-3
  31. 31. P. Ferrara, H. Gohlke, D. J. Price, G. Klebe and C. L. Brooks, Assessing Scoring functions for protein-ligand interactions, J. Med. Chem.47 (2004) 3032–3047; https://doi.org/10.1021/jm030489h10.1021/jm030489h15163185
  32. 32. S. Genheden and U. Ryde, The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities, Expert Opin. Drug Discov.10 (2015) 449–461; https://doi.org/10.1517/17460441.2015.103293610.1517/17460441.2015.1032936448760625835573
  33. 33. S. Matić, M. Jadrijević-Mladar Takač, M. Barbarić, B. Lučić, K. Gall Trošelj and V. Stepanić, The influence of in vivo metabolic modifications on ADMET properties of green tea catechins – In silico analysis, J. Pharm. Sci. 107 (2018) 2957–2964; https://doi.org/10.1016/j.xphs.2018.07.02610.1016/j.xphs.2018.07.02630077700
  34. 34. N. J. Cox, Speaking stata: Correlation with confidence, or Fisher’s z revisited, Stata J. 8 (2008) 413–439; https://ageconsearch.umn.edu/record/122603
  35. 35. D. A. Vattem and K. Shetty, Biological functionality of ellagic acid: a review, J. Food Biochem. 29 (2005) 234–266; https://doi.org/10.1111/j.1745-4514.2005.00031.x10.1111/j.1745-4514.2005.00031.x
  36. 36. J. M. Landete, Ellagitannins, ellagic acid and their derived metabolites: A review about source, metabolism, functions and health, Food Res. Int.44 (2011) 1150–1160; https://doi.org/10.1016/j.foodres.2011.04.02710.1016/j.foodres.2011.04.027
DOI: https://doi.org/10.2478/acph-2021-0005 | Journal eISSN: 1846-9558 | Journal ISSN: 1330-0075
Language: English
Page range: 115 - 130
Accepted on: Mar 21, 2020
Published on: Jul 20, 2020
Published by: Croatian Pharmaceutical Society
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year
Related subjects:

© 2020 Nizar A. Al-Shar’i, Qosay A. Al-Balas, Mohammad A. Hassan, Tamam M. El-Elimat, Ghazi A. Aljabal, Ammar M. Almaaytah, published by Croatian Pharmaceutical Society
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.