Have a personal or library account? Click to login
Protective effects of olive oil phenolics oleuropein and hydroxytyrosol against hydrogen peroxide-induced DNA damage in human peripheral lymphocytes Cover

Protective effects of olive oil phenolics oleuropein and hydroxytyrosol against hydrogen peroxide-induced DNA damage in human peripheral lymphocytes

Open Access
|Jul 2020

References

  1. 1. O. Lee and B. Lee, Antioxidant and antimicrobial activities of individual and combined phenolics in Olea europaea leaf extract, Bioresour. Technol.101 (2010) 3751–3754; https://doi.org/10.1016/j.biortech.2009.12.05210.1016/j.biortech.2009.12.052
  2. 2. N. Zorić, I. Horvat, N. Kopjar, A. Vučemilović, D. Kremer, S. Tomić and I. Kosalec, Hydroxytyrosol expresses antifungal activity in vitro, Curr. Drug Targets14 (2013) 992–998.10.2174/13894501113149990167
  3. 3. S. Cicerale, L. J. Lucas and R. S. J. Keast, Antimicrobial, antioxidant and anti-inflammatory phenolic activities in extra virgin olive oil, Curr. Opin. Biotechnol.23 (2011) 1–7; https://doi.org/10.1016/j.copbio.2011.09.00610.1016/j.copbio.2011.09.006
  4. 4. A. Aherne and N. M. O’Brien, Protection by the flavonoid myricetin, quercetin, and rutin against hydrogen peroxide-induced DNA damage in Caco-2 and Hep G2 cells, Nutr. Cancer34 (1999) 160–166; https://doi.org/10.1207/S15327914NC3402_610.1207/S15327914NC3402_6
  5. 5. B. Uttara, A. V. Singh, P. Zamboni and R. T. Mahajan, Oxidative stress and neurodegenerative diseases: A review of upstream and downstream antioxidant therapeutic options, Curr. Neuropharmacol.7 (2009) 65–74; https://doi.org/10.2174/15701590978760282310.2174/157015909787602823
  6. 6. J. M. Mates and F. M. Sanchez-Jimenez, Role of reactive oxygen species in apoptosis: Implications for cancer therapy, Int. J. Biochem. Cell Biol.32 (2000) 157–170; https://doi.org/10.1016/S1357-2725(99)00088-610.1016/S1357-2725(99)00088-6
  7. 7. P. Xie, L. Huang, C. Zhang and Y. Zhang, Phenolic compositions, and antioxidant performance of olive leaf and fruit (Olea europaea L.) extracts and their structure-activity relationship, J. Funct. Foods16 (2015) 460–471; https://doi.org/10.1016/j.jff.2015.05.00510.1016/j.jff.2015.05.005
  8. 8. E. Gimeno, K. de la Torre-Carbot, R. M. Lamuela-Raventos, A. I. Castellote, M. Fito, R. de la Torre, M. I. Covas and M. Carmen Lopez-Sabater, Changes in the phenolic content of low density lipo-protein after olive oil consumption in men. A randomized crossover controlled trial, Br. J. Nutr.98 (2007) 1243–1250; https://doi.org/10.1017/S000711450777869810.1017/S000711450777869817617938
  9. 9. S. Salvini, F. Sera, D. Caruso, L. Giovannelli, F. Visioli, C. Saieva, G. Masal, M. Ceroti, V. Giovacchini, V. Pitozzi, C. Galli, A. Romani, N. Mulinacci, R. Bortolomeazzi, P. Dolara and D. Palli, Daily consumption of a high-phenol extra-virgin olive oil reduces oxidative DNA damage in postmenopausal women, Br. J. Nutr.95 (2006) 742–751; https://doi.org/10.1079/BJN2005167410.1079/BJN2005167416571154
  10. 10. A. Machowetz, H. E. Poulsen, S. Gruendel, A. Weimann, M. Fito, J. Marrugat, R. de la Torre, J. T. Salonen, K. Nyyssonen, J. Mursu, S. Nascetti, A. Gaddi, H. Kiesewetter, H. Baumler, H. Selmi, J. Kaikkonen, H. J. Zunft, M. I. Covas and C. Koebnick, Effect of olive oils on biomarkers of oxidative DNA stress in Northern and Southern Europeans, FASEB J.21 (2007) 45–52; https://doi.org/10.1096/fj.06-6328com10.1096/fj.06-6328com17110467
  11. 11. S. Grasso, L. Siracusa, C. Spatafora, M. Renis and C. Tringali, Hydroxytyrosol lipophilic analogues: enzymathic sythesis, radical-scavenging activity and DNA oxidative damage protection, Bioorg. Chem.35 (2007) 137–152; https://doi.org/10.1016/j.bioorg.2006.09.00310.1016/j.bioorg.2006.09.003
  12. 12. J. Anter, Z. Fernandez-Bedmar, M. Villatoro-Pulido, S. Demyda-Peyras, M. Moreno-Millan, A. Alonso-Moraga, A. Munoz-Serrano and M. D. Luque de Castro, A pilot study on the DNA-protective, cytotoxic, and apoptosis-inducing properties of olive-leaf extracts, Mutat. Res.723 (2011) 165–170; https://doi.org/10.1016/j.mrgentox.2011.05.00510.1016/j.mrgentox.2011.05.005
  13. 13. E. M. Odiatou, A. L. Skaltsounis and A. I. Constantinou, Identification of the factors responsible for the in vitro proxidant and cytotoxic activities of the olive polyphenols oleuropein and hydroxytyrosol, Cancer Lett.330 (2013) 113–121; http://doi.org/10.1016/j.canlet.2012.11.03510.1016/j.canlet.2012.11.035
  14. 14. R. Fabiani, P. Rosignoli, A. De Bartolomeo, R. Fuccelli, M. Servili, G. F. Montedoro and G. Morozzi, Oxidative DNA damage is prevented by extracts of olive oil, hydroxytyrosol, and other olive phenolic compounds in human blood mononuclear cells and HL60 cells, J. Nutr.138 (2008) 1411–1416; https://doi.org/10.1093/jn/138.8.141110.1093/jn/138.8.1411
  15. 15. R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang and C. Rice-Evans, Antioxidant activity applying an improved ABTS radical cation delorization assay, Free Radic. Biol. Med.26 (1999) 1231–1237; https://doi.org/10.1016/s0891-5849(98)00315-310.1016/S0891-5849(98)00315-3
  16. 16. M. N. Asghar, I. U. Khan, I. Zia, M. Ahmad and F. A. Qureshi, Modified 2,2’-azinobis(3-ethylbenzo thiazoline)-6-sulphonic acid radical cation decolorization assay for antioxidant activity of human plasma and extracts of traditional medicinal plants, Acta Chim. Slov.55 (2008) 408–418.
  17. 17. I. F. Benzie and J. J. Strain, The ferric reducing ability of plasma (FRAP) as a measure of „antioxidant power“: the FRAP assay, Anal. Biochem.239 (1996) 70–76; https://doi.org/10.1006/abio.1996.029210.1006/abio.1996.0292
  18. 18. R. Apak, K. Guclu, M. Ozyurek and S. E. Karademir, Novel total antioxidant index for dietary polyphenols and vitamin C and E using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method, J. Agric. Food Chem.52 (2004) 7970–7981; https://doi.org/10.1021/jf048741x10.1021/jf048741x
  19. 19. N. P. Singh, M. T. McCoy, R. R. Tice and E. L. Schneider, A simple technique for quantitation of low levels of DNA damage in individual cells, Exp. Cell Res.175 (1988) 184–191; https://doi.org/10.1016/0014-4827(88)90265-010.1016/0014-4827(88)90265-0
  20. 20. W. Bors, W. Heller, C. Michel and M. Saran, Flavonoids as antioxidants: Determination of radical-scavenging efficiencies, Methods Enzymol.186 (1990) 343–355; https://doi.org/10.1016/0076-6879(90)86128-I10.1016/0076-6879(90)86128-I
  21. 21. O. Benavente-Garcia, J. Castillo, J. Lorente, A. Ortuno and J. A. Del Rio, Antioxidant activity of phenolics extracted from Olea europaea L. leaves, Food Chem. 68 (2000) 457–462; https://doi.org/10.1016/S0308-8146(99)00221-610.1016/S0308-8146(99)00221-6
  22. 22. O. Benavente-Garcia, J. Castillo, F. R. Marin, A. Ortuno and J. A. del Rio, Uses and properties of Citrus flavonoids, J. Agric. Food Chem.45 (1997) 4504–4515; https://doi.org/10.1021/jf970373s10.1021/jf970373s
  23. 23. Z. Xiang and Z. Ning, Scavenging and antioxidant properties of compound derived from chlorogenic acid in South-China honeysuckle, LWT-Food Sci. Technol.41 (2008) 1189–1203; https://doi.org/10.1016/j.lwt.2007.08.00610.1016/j.lwt.2007.08.006
  24. 24. M. Özyürek, K. Guclu and R. Apak, The main and modified CUPRAC methods of antioxidant measurement, Trends Anal. Chem.30 (2011) 652–664; https://doi.org/10.1016/j.trac.2010.11.01610.1016/j.trac.2010.11.016
  25. 25. A. Lucić Vrdoljak, S. Žunec, B. Radić, R. Fuchs, D. Želježić and N. Kopjar, Evaluation of the cyto/genotoxicity profile of oxime K048 using human peripheral blood lymphocytes: An introductory study, Toxicol. In Vitro28 (2014) 39–45; https://doi.org/10.1016/j.tiv.2013.06.00710.1016/j.tiv.2013.06.007
  26. 26. A. Vulić, K. Durgo, J. Pleadin, L. Herceg and N. Kopjar, Mutagenicity and DNA-damaging potential of clenbuterol and its metabolite 4-amino-3,5-dichlorobenzoic acid in vitro, Food Chem. Toxicol.77 (2015) 82–92; https://doi.org/10.1016/j.fct.2014.12.02310.1016/j.fct.2014.12.023
  27. 27. S. J. Duthie, A. R. Collins, G. G. Duthie and V. L. Dobson, Quercetin and myricetin protect against hydrogen peroxide-induced DNA damage (strand breaks and oxidised pyrimidines) in human lymphocytes, Mutat Res.393 (1997) 223–231; https://doi.org/10.1016/s1383-5718(97)00107-110.1016/S1383-5718(97)00107-1
  28. 28. M. Czerwinska, A. K. Kiss and M. Naruszewicz, A comparison of antioxidant activity of oleuropein and its dialdehydic form oleacein, Food Chem.131 (2012) 953–960; https://doi.org/10.1016/j.foodchem.2011.09.08210.1016/j.foodchem.2011.09.082
  29. 29. S. Bulotta, R. Corradino, M. Celano, M. D’Agostino, J. Maiuolo, M. Oliverio, A. Procopio, M. Ian-none, D. Rotiroti and D. Russo, Antiproliferative and antioxidant effects of oleuropein and its semisynthetic peracetylated derivatives on breast cancer cells, Food Chem.127 (2011) 1609–1614; https://doi.org/10.1016/j.foodchem.2011.02.02510.1016/j.foodchem.2011.02.025
  30. 30. A. Čabarkapa, L. Živković, D. Žukovec, N. Djelić, V. Bajić, D. Dekanski and B. Spremo-Potparević, Protective effect of dry olive leaf extract in adrenaline induced DNA damage evaluated using in vitro comet assay with human peripheral leukocytes, Toxicol. In Vitro28 (2014) 451–456; https://doi.org/10.1016/j.tiv.2013.12.01410.1016/j.tiv.2013.12.01424389114
  31. 31. K. Kyriakopoulou, E. Katsanou, K. Machera and A. Charistou, Oleuropein protects Hep G2 cells against oxidative stress-induced DNA damage, Toxicol Lett.211 (2012) S106; https://doi.org/10.1016/j.toxlet.2012.03.39610.1016/j.toxlet.2012.03.396
  32. 32. H. F. Al-Azzawie and M. S. lhamdani, Hypoglycemic and antioxidant effect of oleuopein in alloxan-diabetic rabbits, Life Sci.78 (2006) 1371–1377; https://doi.org/10.1016/j.lfs.2005.07.0293410.1016/j.lfs.2005.07.029
  33. 33. H. Jemai, I. Fki, M. Bouaziz, Z. Bouallaqui, A. El Feki, H. Isoda and S. Sayadi, Lipid-lowering and antioxidant effects of hydroxytyrosol and its triacetylated derivative recovered from olive tree leaves in cholesterol-fed rats, J. Agric. Food Chem.56 (2008) 2630–2636; https://doi.org/10.1021/jf072589s10.1021/jf072589s18380465
  34. 34. D. Kotyzova, A. Hodkov and V. Eybl, The effect of olive oil phenolics-hydroxytyrosol and oleuropein on antioxidant defence status in acute arsenic exposed rats, Toxicol. Lett.205 (2011) S222; https://doi.org/10.1016/j.toxlet.2011.05.76110.1016/j.toxlet.2011.05.761
DOI: https://doi.org/10.2478/acph-2021-0003 | Journal eISSN: 1846-9558 | Journal ISSN: 1330-0075
Language: English
Page range: 131 - 141
Accepted on: Mar 10, 2020
|
Published on: Jul 20, 2020
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year
Related subjects:

© 2020 Nataša Zorić, Nevenka Kopjar, Jadranka Vuković Rodriguez, Siniša Tomić, Ivan Kosalec, published by Croatian Pharmaceutical Society
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.