3. A. Garmyn, M. Vereecken, K. Degussem, W. Depondt, F. Haesebrouck and A. Martel, Efficacy of tiamulin alone or in combination with chlortetracycline against experimental Mycoplasma gallisepticum infection in chickens, Poult Sci.96 (2017) 3367–3374; https://doi.org/10.3382/ps/pex10510.3382/ps/pex105
5. A. Gajda and A. Posyniak, Liquid chromatography – tandem mass spectrometry method for the determination of ten tetracycline residues in muscle samples, Bull. Vet. Pulawy.59 (2015) 345–352; https://doi.org/10.1515/bvip-2015-005110.1515/bvip-2015-0051
6. H. H. E. Williams, M. D. Tokach, S. S. Dritz, J. C. Woodworth, J. M. DeRouchey, R. G. Amachawadi, T. G. Nagaraja and R. D. Goodband, Effects of feeding probiotic or chlortetracycline or a combination on nursery pig growth performance, J. Anim. Sci.95 (2017) 81–82; https://doi.org/10.2527/asasmw.2017.12.17210.2527/asasmw.2017.12.172
7. E. R. Campagnolo, K. R. Johnson, A. Karpati, C. S. Rubin, D. W. Kolpin, M. T. Meyer, J. E. Esteban, R. W. Currier, K. Smith, K. M. Thu and M. McGeehin, Antimicrobial residues in animal waste and water resources proximal to large-scale swine and poultry feeding operations, Sci. Total. Environ.299 (2002) 89–95; https://doi.org/10.1016/s0048-9697(02)00233-410.1016/S0048-9697(02)00233-4
10. C. Florindo, A. Costa, C. Matos, S. L. Nunes, A. N. Matias, C. M. M. Duarte, L. P. N. Rebelo, L. C. Branco and I. M. Marrucho, Novel organic salts based on fluoroquinolone drugs: Synthesis, bioavailability and toxicological profiles, Int. J. Pharm.469 (2014) 179–189; https://doi.org/10.1016/j.ijpharm.2014.04.03410.1016/j.ijpharm.2014.04.03424746413
11. W. Guerra, E. D. Azevedo, A. R. D. Monteiro, M. Bucciarelli-Rodriguez, E. Chartone-Souza, A. M. A. Nascimento, A. P. S. Fontes, L. Le Moyec and E. C. Pereira-Maia, Synthesis, characterization, and antibacterial activity of three palladium(II) complexes of tetracyclines, J. Inorg. Biochem.99 (2005) 2348–2354; https://doi.org/10.1016/j.jinorgbio.2005.09.00110.1016/j.jinorgbio.2005.09.001
12. D. Fernandez-Calvino, A. Bermudez-Couso, M. Arias-Estevez, J. C. Novoa-Munoz, M. J. FernandezSanjurjo, E. Alvarez-Rodriguez and A. Nunez-Delgado, Kinetics of tetracycline, oxytetracycline, and chlortetracycline adsorption and desorption on two acid soils, Environ. Sci. Pollut. Res.22 (2015) 425–433; https://doi.org/10.1007/s11356-014-3367-910.1007/s11356-014-3367-9
13. S. Aitipamula, A. B. H. Wong, P. S. Chow and R. B. H. Tan, Pharmaceutical Salts of Haloperidol with Some Carboxylic Acids and Artificial Sweeteners: Hydrate Formation, Polymorphism, and Physicochemical Properties, Cryst. Growth Des.14 (2014) 2542–2556; https://doi.org/10.1021/cg500245e10.1021/cg500245e
14. A. O. Surov, A. N. Manin, A. P. Voronin, K. V. Drozd, A. A. Simagina, A. V. Churakov and G. L. Perlovich, Pharmaceutical salts of ciprofloxacin with dicarboxylic acids, Eur. J. Pharm. Sci.77 (2015) 112–121; https://doi.org/10.1016/j.ejps.2015.06.00410.1016/j.ejps.2015.06.004
15. G. Zurhelle, M. Petz, E. Mueller-Seitz and E. Siewert, Metabolites of oxytetracycline, tetracycline, and chlortetracycline and their distribution in egg white, egg yolk, and hen plasma, J. Agric. Food. Chem.48 (2000) 6392–6396; https://doi.org/10.1021/jf000141k10.1021/jf000141k
16. M. Cherlet, M. Schelkens, S. Croubels and P. De Backer, Quantitative multi-residue analysis of tetracyclines and their 4-epimers in pig tissues by high-performance liquid chromatography combined with positive-ion electrospray ionization mass spectrometry, Anal. Chim. Acta.492 (2003) 199–213; https://doi.org/10.1016/s0003-2670(03)00341-610.1016/S0003-2670(03)00341-6
17. A. L. Cinquina, F. Longo, G. Anastasi, L. Giannetti and R. Cozzani, Validation of a high-performance liquid chromatography method for the determination of oxytetracycline, tetracycline, chlortetracycline and doxycycline in bovine milk and muscle, J. Chromatogr. A.987 (2003) 227–233; https://doi.org/10.1016/s0021-9673(02)01446-210.1016/S0021-9673(02)01446-2
19. A. Anadon, F. Gamboa, M. Aranzazu Martinez, V. Castellano, M. Martinez, I. Ares, E. Ramos, F. H. Suarez and M. Rosa Martinez-Larranaga, Plasma disposition and tissue depletion of chlortetracycline in the food producing animals, chickens for fattening, Food Chem. Toxicol.50 (2012) 2714–2721; https://doi.org/10.1016/j.fct.2012.05.00710.1016/j.fct.2012.05.00722595330
21. K. Washburn, V. R. Fajt, P. Plummer, J. F. Coetzee, L. W. Wulf and S. Washburn, Pharmacokinetics of oral chlortetracycline in nonpregnant adult ewes, J. Vet. Pharmacol. Ther.37 (2014) 607–610; https://doi.org/10.1111/jvp.1214410.1111/jvp.12144
23. H. S. Chung, Y.-J. Lee, M. M. Rahman, A. M. Abd El-Aty, H. S. Lee, M. H. Kabir, S. Kim, B.-J. Park, J.-E. Kim, F. Hacimuftuoglu, N. Nahar, H.-C. Shin and J.-H. Shim, Uptake of the veterinary antibiotics chlortetracycline, enrofloxacin, and sulphathiazole from soil by radish, Sci. Total Environ.605 (2017) 322–331; https://doi.org/10.1016/j.scitotenv.2017.06.23110.1016/j.scitotenv.2017.06.231
24. C. Schwake-Anduschus and G. Langenkamper, Chlortetracycline and related tetracyclines: detection in wheat and rye grain, J. Sci. Food Agric.98 (2018) 4542–4549; https://doi.org/10.1002/jsfa.898210.1002/jsfa.8982
25. A. Molaei, A. Lakzian, R. Datta, G. Haghnia, A. Astaraei, M. Rasouli-Sadaghiani and M. T. Ceccherini, Impact of chlortetracycline and sulfapyridine antibiotics on soil enzyme activities, Int. Agrophys.31 (2017) 499–505; https://doi.org/10.1515/intag-2016-008410.1515/intag-2016-0084
27. Z. Huang, R. Francis, Y. Zha and J. Ruan, Development of a simple method for quantitation of methanesulfonic acid at low ppm level using hydrophilic interaction chromatography coupled with ESI-MS, J. Pharm. Biomed. Anal.102 (2015) 17–24; https://doi.org/10.1016/j.jpba.2014.08.01910.1016/j.jpba.2014.08.019
28. J. Zhu, D. D. Snow, D. A. Cassada, S. J. Monson and R. F. Spalding, Analysis of oxytetracycline, tetracycline, and chlortetracycline in water using solid-phase extraction and liquid chromatographytandem mass spectrometry, J. Chromatogr. A.928 (2001) 177–186; https://doi.org/10.1016/s0021-9673(01)01139-610.1016/S0021-9673(01)01139-6
30. A. M. Kamel, H. G. Fouda, P. R. Brown and B. Munson, Mass spectral characterization of tetracyclines by electrospray ionization, H/D exchange, and multiple stage mass spectrometry, J. Am. Soc. Mass. Spectrom.13 (2002) 543–557; https://doi.org/10.1016/s1044-0305(02)00356-210.1016/S1044-0305(02)00356-2
31. S. Miyazaki, T. Arita, R. Hori and K. Ito, Effect of polymorphism on dissolution behavior and gastrointestinal absorption of chlortetracycline hydrochloride, Chem. Pharm. Bull.22 (1974) 638–642; https://doi.org/10.1248/cpb.22.63810.1248/cpb.22.638
32. P. Cervini, L. C. Murreli Machado, A. P. Garcia Ferreira, B. Ambrozini and E. T. Gomes Cavalheiro, Thermal decomposition of tetracycline and chlortetracycline, J. Anal. Appl. Pyrolysis.118 (2016) 317–324; https://doi.org/10.1016/j.jaap.2016.02.01510.1016/j.jaap.2016.02.015
33. J. Diana, L. Vandenbosch, B. De Spiegeleer, J. Hoogmartens and E. Adams, Evaluation of the stability of chlortetracycline in granular premixes by monitoring its conversion into degradation products, J. Pharm. Biomed. Anal.39 (2005) 523–530; https://doi.org/10.1016/j.jpba.2005.04.03010.1016/j.jpba.2005.04.030
34. O. Quattrocchi, L. Frisardi, M. Iglesias, M. Noya, M. Caputto, D. Ferraris, D. Siliprandi and E. Piccinni, Ion exchange chromatographic determination of olpadronate, phosphate, phosphite, chloride and methanesulfonic acid, J. Pharm. Biomed. Anal.24 (2001) 1011–1018; https://doi.org/10.1016/s0731-7085(00)00535-510.1016/S0731-7085(00)00535-5
37. T. Nikolov, K. Berchev and A. Ilkov, Protein pattern in the blood serum of rabbits treated with chlortetracycline, Tr. Vissh. Med. Inst.41 (1962) 41–48.