Have a personal or library account? Click to login

Anthelmintic activity of praziquantel and Spilanthes acmella extract on an intestinal cestode parasite

Open Access
|May 2020

References

  1. 1. S. Dubey, S. Maity, M. Singh, S. A. Saraf and S. Saha, Phytochemistry, pharmacology and toxicology of Spilanthes acmella: A review, Adv. Pharmacol. Sci. (2013) Article ID 423750 (9 pages); https://doi.org/10.1155/2013/42375010.1155/2013/423750
  2. 2. J. Paulraj, R. Govindarajan and P. Palpu, The genus Spilanthes ethnopharmacology, phytochemistry, and pharmacological properties: A review, Adv. Pharmacol. Sci. (2013) Article ID 510298 (22 pages); https://doi.org/10.1155/2013/51029810.1155/2013/510298
  3. 3. G. R. Abeysiri, R. M. Dharmadasa, D. C. Abeysinghe and K. Samarasinghe, Screening of phytochemical, physico-chemical and bioactivity of different parts of Acmella oleraceae Murr. (Asteraceae), a natural remedy for toothache, Ind. Crops Prod.50 (2013) 852–856; https://doi.org/10.1016/jindcrop.2013.08.043
  4. 4. O. Neamsuvan and T. Ruangrit, A survey of herbal weeds that are used to treat gastrointestinal disorders from southern Thailand: Krabi and Songkhla provinces, J. Ethnopharmacol.20 (2017) 84–93; https://doi.org/10.1016/j.jep.2016.11.03310.1016/j.jep.2016.11.033
  5. 5. K. Spelman, D. Depoix, M. McCray, E. Mouray and P. Grellier, The traditional medicine Spilanthes acmella, and the alkylamides spilanthol and undeca-2e-ene-8,10-diynoic acid isobutylamide, demonstrate in vitro and in vivo antimalarial activity, Phytother. Res.25 (2011) 1098–1101; https://doi.org/10.1002/ptr3395
  6. 6. S. Prachayasittikul, V. Prachayasittikul, V. Prachayasittikul and S. Ruchirawat, High therapeutic potential of Spilanthes acmella: A review, EXCLI J.12 (2013) 291–312; https://doi.org/10.17877/DE290R-14787
  7. 7. K. L. Tiwari, S. K. Jadhav and V. Joshi, An updated review on medicinal herb genus Spilanthes, Chin. J. Integr. Med.9 (2011) 1170–1178.10.3736/jcim20111103
  8. 8. R. V. Savadi, R. Yadav and N. Yadav, Study on immunomodulatory activity of ethanolic extract of Spilanthes acmella Murr. leaves, Indian J. Nat. Prod. Resour.1 (2010) 204–207.
  9. 9. K. H. Kim, E. J. Kim, M. J. Kwun, J. Y. Lee, S. M. Eum, J. Y. Choi, S. Cho, S. J. Kim, S. I. Jeong and M. Joo, Suppression of lung inflammation by the methanol extract of Spilanthes acmella Murray is related to differential regulation of NF–κB and Nrf2, J. Ethnopharmacol.217 (2018) 89–97; https://doi.org/10.1016/j.jep.2018.02.01110.1016/j.jep.2018.02.011
  10. 10. A. Chakraborty, B. R. Devi, R. Sanjebam, S. Khumbong and I. S. Thokchom, Preliminary studies on local anesthetic and antipyretic activities of Spilanthes acmella Murr. in experimental animal models, Indian J. Pharmacol.42 (2010) 277–279; https://doi.org/10.4103/0253-7613.7010610.4103/0253-7613.70106
  11. 11. R. S. Ramsewak, A. J. Erickson and M. G. Nair, Bioactive N-isobutylamides from the flower buds of Spilanthes acmella, Phytochemistry51 (1999) 729–732; https://doi.org/10.1016/S0031-9422(99)00101-610.1016/S0031-9422(99)00101-6
  12. 12. N. K. Simas, E. D. C. L. Dellamora, J. Schripsema, C. L. S. Lage, A. M. de Oliveira Filho, L. Wessjohann, A. Porje and R. M. Kuster, Acetylenic 2-phenylethylamides and new isobutylamides from Acmella oleracea (L.) RK Jansen, a Brazilian spice with larvicidal activity on Aedes aegypti, Phytochem Lett. 6 (2013) 67–72; https://doi.org/10.1016/j.phytol.2012.10.01610.1016/j.phytol.2012.10.016
  13. 13. V. Pandey, V. Agrawal, K. Raghavendra and A. P. Dash, Strong larvicidal activity of three species of Spilanthes (Akarkara) against malaria (Anopheles stephensi Liston, Anopheles culicifacies, species C) and filaria vector (Culex quinquefasciatus Say), Parasitol. Res.102 (2007) 171–174; https://doi.org/10.1007/s00436-007-0763-910.1007/s00436-007-0763-917922235
  14. 14. P. B. Lalthanpuii, R. Lalawmpuii, H. Lalhlenmawia, K. Vanlaldinpuia and K. Lalchhandama, Chemical constituents and some biological properties of the traditional herbal medicine Acmella oleracea (Asteraceae), in: Science and Technology for the Future of Mizoram (Ed. K. Lalchhandama), Allied Publishers, New Delhi 2017, pp. 168–173.
  15. 15. T. L. Lemos, O. D. Pessoa, F. J. Matos, J. W. Alencar and A. A. Craveiro, The essential oil of Spilanthes acmella Murr., J. Essent. Oil Res. 3 (1991) 369–370; https://doi.org/10.1080/104129051991.9697962
  16. 16. A. F. Barbosa, M. G. de Carvalho, R. E. Smith and A. U. Sabaa-Srur, Spilanthol: occurrence, extraction, chemistry and biological activities, Rev. Bras. Farmacogn. 26 (2016) 128–133; https://doi.org/10.1016/j.bjp.2015.07.02410.1016/j.bjp.2015.07.024
  17. 17. T. C. Leng, N. S. Ping, B. P. Lim and C. L. Keng, Detection of bioactive compounds from Spilanthes acmella (L.) plants and its various in vitro culture products, J. Med. Plants Res.5 (2011) 371–378.
  18. 18. V. Aparna, K. V. Dileep, P. K. Mandal, P. Karthe, C. Sadasivan and M. Haridas, Anti-inflammatory property of n-hexadecanoic acid: structural evidence and kinetic assessment, Chem. Biol. Drug Des.80 (2012) 434–439; https://doi.org/10.1111/j.1747-0285.2012.01418.x10.1111/j.1747-0285.2012.01418.x22642495
  19. 19. M. T. Islam, M. V. O. B. de Alencar, K. da Conceição Machado, K. da Conceição Machado, A. A. de Carvalho Melo-Cavalcante, D. P. de Sousa and R. M. de Freitas, Phytol in a pharma-medicostance, Chem-Biol. Interact. 240 (2015) 60–73; https://doi.org/10.1016/j.cbi.2015.07.01010.1016/j.cbi.2015.07.01026296761
  20. 20. C. M. Thomas and D. J. Timson, The mechanism of action of praziquantel: Six hypotheses, Curr. Top. Med. Chem.18 (2018) 1575–1584; https://doi.org/10.2174/156802661866618102914321410.2174/156802661866618102914321430370849
  21. 21. W. Wu, W. Wang and Y. X. Huang, New insight into praziquantel against various developmental stages of schistosomes, Parasitol. Res.109 (2011) 1501–1507; https://doi.org/10.1007/s00436-011-2670-310.1007/s00436-011-2670-321984370
  22. 22. M. J. Gouveia, P. J. Brindley, C. Azevedo, F. Gärtner, J. M. da Costa and N. Vale, The antioxidants resveratrol and N-acetylcysteine enhance anthelmintic activity of praziquantel and artesunate against Schistosoma mansoni, Parasit. Vectors12 (2019) Article ID 309 (12 pages); https://doi.org/101186/s13071-019-3566-9
  23. 23. O. M. Shady, M. M. Basyoni, O. A. Mahdy and N. Z. Bocktor, The effect of praziquantel and Carica papaya seeds on Hymenolepis nana infection in mice using scanning electron microscope, Parasitol. Res.113 (2014) 2827–2836; https://doi.org/10.1007/s00436-014-3943-410.1007/s00436-014-3943-424849866
  24. 24. J. de Moraes, C. Nascimento, P. O. Lopes, E. Nakano, L. F. Yamaguchi, M. J. Kato and T. Kawano, Schistosoma mansoni: in vitro schistosomicidal activity of piplartine, Exp. Parasitol. 127 (2011) 357–364; https://doi.org/10.1016/j.exppara.2010.08.02110.1016/j.exppara.2010.08.02120832410
DOI: https://doi.org/10.2478/acph-2020-0039 | Journal eISSN: 1846-9558 | Journal ISSN: 1330-0075
Language: English
Page range: 551 - 560
Accepted on: Dec 3, 2019
Published on: May 13, 2020
Published by: Croatian Pharmaceutical Society
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year
Related subjects:

© 2020 Pawi Bawitlung Lalthanpuii, Zar Zokimi, Kholhring Lalchhandama, published by Croatian Pharmaceutical Society
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.