Have a personal or library account? Click to login

Probing the release of the chronobiotic hormone melatonin from hybrid calcium alginate hydrogel beads

Open Access
|May 2020

References

  1. 1. S. M. Reppert, D. R. Weaver and C. Godson, Melatonin receptors step into the light: cloning and classification of subtypes, Trends Pharmacol. Sci.17 (1996) 100–102; https://doi.org/10.1016/0165-6147(96)10005-510.1016/0165-6147(96)10005-5
  2. 2. E. Mills, P. Wu, D. Seely and G. Guyatt, Melatonin in the treatment of cancer: a systematic review of randomized controlled trials and meta-analysis, J. Pineal. Res.39 (2005) 360–366; https://doi.org/10.1111/j.1600-079X.2005.00258.x10.1111/j.1600-079X.2005.00258.x16207291
  3. 3. S. Malhotra, G. Sawhney and P. Pandhi, The therapeutic potential of melatonin: a review of the science, MedGenMed.6 (2004) 46; https://doi.org/10.0000/ncbi.nlm.nih.gov/PMC1395802
  4. 4. M. L. Dubocovich, P. Delagrange, D. N. Krause, D. Sugden, D. P. Cardinali and J. Olcese, International Union of Basic and Clinical Pharmacology. LXXV. Nomenclature, classification, and pharmacology of G protein coupled melatonin receptors, Pharmacol. Rev.62 (2010) 343–380; https://doi.org/10.1124/pr.110.00283210.1124/pr.110.002832296490120605968
  5. 5. L. M. Hack, S. W. Lockley, J. Arendt and D. J. Skene, The effects of low-dose 0.5-mg melatonin on the free-running circadian rhythms of blind subjects, J. Biol. Rhythms.18 (2003) 420–429; https://doi.org/10.1177/074873040325679610.1177/074873040325679614582858
  6. 6. A. J. Lewy, J. N. Rough, J. B. Songer, N. Mishra, K. Yuhas and J. S. Emens, The phase shift hypothesis for the circadian component of winter depression, Dialogues Clin. Neurosci.9 (2007) 291–300.10.31887/DCNS.2007.9.3/alewy
  7. 7. J. Arendt and D. J. Skene, Melatonin as a chronobiotic, Sleep Med. Rev.9 (2005) 25–39; https://doi.org/10.1016/j.smrv.2004.05.00210.1016/j.smrv.2004.05.00215649736
  8. 8. R. Sharma, C. R. McMillan, C. C. Ten and L. P. Niles, Physiological neuroprotection by melatonin in a 6-hydroxydopamine model of Parkinson’s disease, Brain Res.1068 (2006) 230–236; https://doi.org/10.1016/j.brainres.2005.10.08410.1016/j.brainres.2005.10.08416375867
  9. 9. M. Olcese, C. Cao, T. Mori, M. B. Mamcarz, A. Maxwell, M. J. Runfelt, C. Wang, X. Lin, G. Zhang and G. W. Arendash, Protection against cognitive deficits and markers of neurodegeneration by long-term oral administration of melatonin in a transgenic model of Alzheimer disease, J. Pineal Res.47 (2009) 82–96; https://doi.org/10.1111/j.1600-079X.2009.00692.x10.1111/j.1600-079X.2009.00692.x19538338
  10. 10. S. G. Grant, M. A. Melan, J. J. Latimer and P. A. Witt-Enderby, Melatonin and breast cancer: cellular mechanisms, clinical studies and future perspectives, Expert Rev. Mol. Med.11 (2009) e5. https://doi.org/10.1017/S146239940900098210.1017/S1462399409000982430173519193248
  11. 11. S. Sibel, Melatonin and synthetic analogs as antioxidants, Curr. Drug Deliv. 10 (2013) 71–75; https://doi.org/10.2174/156720181131001001310.2174/156720181131001001322998047
  12. 12. M. Vlachou and A. Siamidi, Melatonin Modified Release Formulations, in Melatonin – Molecular Biology, Clinical and Pharmaceutical Approaches (Ed. C. M. Dragoi); http://dx.doi.org/10.5772/intechopen.7833710.5772/intechopen.78337
  13. 13. M. Vlachou, A. Siamidi, I. Pareli, A. Zampakola and S. Konstantinidou, An account of modified release of melatonin from compression-coated, uncoated and bilayer tablets, J. Pharm. Pharm. Scien.1 (2016) 10–14; https://doi.org/10.24218/vjpps.2016.1910.24218/vjpps.2016.19
  14. 14. M. Vlachou, A. Siamidi, S. Konstantinidou and Y. Dotsikas, Optimization of controlled release matrix formulation of melatonin via experimental design, J. Pharm. Drug Deliv. Res.5 (2016) 1–5; https://doi.org/10.4172/2325-9604.100015910.4172/2325-9604.1000159
  15. 15. A. Zampakola, A. Siamidi, N. Pippa, C. Demetzos and M. Vlachou, Chronobiotic hormone melatonin: comparative in vitro release studies from matrix tablets and liposomal formulations, Lett. Drug Des. Discov.14 (2017) 476–480; https://doi.org/10.2174/157018081366616100616224610.2174/1570180813666161006162246
  16. 16. M. Vlachou, M. Papamichael, A. Siamidi, I. Fragouli, P. A. Afroudakis, R. Kompogennitaki and Y. Dotsikas, Comparative in vitro controlled release studies on the chronobiotic hormone melatonin from cyclodextrins-containing matrices and cyclodextrin: melatonin complexes, Int. J. Mol. Sci.18 (2017) 1641; https://doi.org/10.3390/ijms1808164110.3390/ijms18081641557803128788064
  17. 17. M. Vlachou, K. Tragou, A. Siamidi, S. Kikionis, A. L. Chatzianagnostou, A. Mitsopoulos, E. Ioannou, V. Roussis and A. Tsotinis, Modified in vitro release of the chronobiotic hormone melatonin from matrix tablets based on the marine sulfated polysaccharide ulvan, J. Drug Deliv. Sci. Technol.44 (2018) 41–48; https://doi.org/10.1016/j.jddst.2017.11.01910.1016/j.jddst.2017.11.019
  18. 18. M. Vlachou, S. Kikionis, A. Siamidi, K. Tragou, E. Ioannou, V. Roussis and A. Tsotinis, Modified in vitro release of melatonin loaded in nanofibrous electrospun mats incorporated into mono-layered and three-layered tablets, J. Pharm. Sci.108 (2019) 970–976; https://doi.org/10.1016/j.xphs.2018.09.03510.1016/j.xphs.2018.09.03530312723
  19. 19. M. Vlachou, S. Kikionis, A. Siamidi, K. Tragou, S. Kapoti, E. Ioannou, V. Roussis and A. Tsotinis, Fabrication and characterization of electrospun nanofibers for the modified release of the chronobiotic hormone melatonin, Curr. Drug Deliv. 16 (2019) 79–85; https://doi.org/10.2174/156720181566618091409570110.2174/1567201815666180914095701634015330215335
  20. 20. M. Vlachou, G. Stavrou, A. Siamidi, S. Flitouri, V. Ioannidou and S. Mavrokordopoulos, N-Acetylserotonin vs. melatonin. In vitro controlled release from hydrophilic matrix tablets, Lett. Drug Des. Discov.16 (2019) 347–352; https://doi.org/10.2174/157018081566618040412551910.2174/1570180815666180404125519
  21. 21. B. Girgin, O. Korkmaz, R. Yavaşer and A. A. Karagözler, Production and drug release assessment of melatonin-loaded alginate/gum arabic beads, JOTCSA3 (2016) 205–216; https://doi.org/10.18596/jotcsa.3088010.18596/jotcsa.30880
  22. 22. O. Şanlı, N. Ay and N. Işıklan, Release characteristics of diclofenac sodium from poly (vinyl alcohol)/sodium alginate and poly (vinyl alcohol)-grafted-poly (acrylamide)/sodium alginate blend beads, Eur. J. Pharm. Biopharm.65 (2007) 204–214; https://doi.org/10.1016/j.ejpb.2006.08.00410.1016/j.ejpb.2006.08.004
  23. 23. N. Pippa, N. Bouropoulos, S. Pispas, C. Demetzos and A. Papalois, Chapter 3. Hydrogels as intelligent drug delivery systems in drug delivery, Nanosystems 2019; 59–91; https://doi.org/10.1201/9780429490545-310.1201/9780429490545-3
  24. 24. Pharmacopeia US, USP 29-NF24, Rockville, 2005.
  25. 25. G. Pasparakis and N. Bouropoulos, Swelling studies and in vitro release of verapamil from calcium alginate and calcium alginate–chitosan beads, Int. J. Pharm.323 (2006) 34–42; https://doi.org/10.1016/j.ijpharm.2006.05.05410.1016/j.ijpharm.2006.05.054
  26. 26. I. Colinet, V. Dulong, G. Mocanu, L. Picton and D. Le Cerf, New amphiphilic and pH-sensitive hydrogel for controlled release of a model poorly water-soluble drug, Eur. J. Pharm. Biopharm.73 (2009) 345–350; https://doi.org/10.1016/j.ejpb.2009.07.00810.1016/j.ejpb.2009.07.008
  27. 27. N. Pippa, T. Sentoukas, S. Pispas, C. Demetzos, A. Papalois and N. Bouropoulos, pH-responsive polymeric nanoassemblies encapsulated into alginate beads: morphological characterization and swelling studies, J. Pol. Res.25 (2018) 117; https://doi.org/10.1007/s10965-018-1519-110.1007/s10965-018-1519-1
  28. 28. J. Siepmann and N. A. Peppas, Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC), Adv. Drug Deliv. Rev.48 (2001) 139–57; https://doi.org/10.1016/S0169-409X(01)00112-010.1016/S0169-409X(01)00112-0
  29. 29. P. L. Ritger and N. A. Peppas, A simple equation for description of solute release II. Fickian and anomalous release from swellable devices, J. Control. Release5 (1987) 37–42; https://doi.org/10.1016/0168-3659(87)90035-610.1016/0168-3659(87)90035-6
  30. 30. Ν. Η. Anderson, Μ. Bauer, Ν. Boussac, Ρ. R. Khan-Malek, P. Munden and M. Sardaro, An evaluation of fit factors and dissolution efficiency for the comparison of in vitro dissolution profiles, J. Pharm. Biomed. Anal. 17 (1998) 811–822; https://doi.org/10.1016/s0731-7085(98)00011-910.1016/S0731-7085(98)00011-9
  31. 31. J. L. Shamshina, G. Gurau, L. E. Block, L. K. Hansen, C. Dingee, A. Walters and R. D. Rogers, Chitin--calcium alginate composite fibers for wound care dressings spun from ionic liquid solution, J. Mater. Chem. B2 (2014) 3924; http://dx.doi.org/10.1039/C4TB00329B10.1039/C4TB00329B
  32. 32. S. Soni, A. Verma and V. Ram, Evaluation of chitosan-hydroxy propyl methyl cellulose as a single unit hydrodynamically balanced sustained release matrices for stomach specific delivery of piroxicam, MOJ Bioequiv. 2 (2016) 14; http://dx.doi.org/10.4172/0975-0851.C1.02510.4172/0975-0851.C1.025
  33. 33. T. H. C. Salles, C. B. Lombello and M. A. d’ Ávila, Electrospinning of gelatin/poly (vinyl pyrrolidone) blends from water/acetic acid solutions, Materials Research18 (2015) 509–518; http://dx.doi.org/10.1590/1516-1439.31011410.1590/1516-1439.310114
  34. 34. Y. Listiohadi, J. A. Hourigan, R. W. Sleigh and R. J. Steele, Thermal analysis of amorphous lactose and α-lactose monohydrate, Dairy Sci. Technol.89 (2009) 43–67; https://doi.org/10.1051/dst:200802710.1051/dst:2008027
  35. 35. A. S. Hoffman Hydrogels for biomedical applications, Adv. Drug Deliv. Rev.43 (2002) 3–12; https://doi.org/10.1016/j.addr.2012.09.01010.1016/j.addr.2012.09.010
  36. 36. S. P. Chaudhari and R. H. Dave, Investigating the effect of molecular weight of polyvinylpyrrolidone and hydroxypropyl methyl cellulose as potential antiprecipitants on supersaturated drug solutions and formulations using weakly acidic drug: indomethacin, IJPSR7 (2016) 3931–3948; https://doi.org/10.13040/IJPSR.0975-8232.7(10).3931-4810.13040/IJPSR.0975-8232.7(10).3931-48
  37. 37. A. Körner, L. Piculell, F. Iselau, B. Wittgren and A. Larsson, Influence of different polymer types on the overall release mechanism in hydrophilic matrix tablets, Molecules14 (2009) 2699–2716; https://doi.org/10.3390/molecules1408269910.3390/molecules14082699625537619701117
  38. 38. M. Vlachou, A. Siamidi and E. Geraniou, Modified release of furosemide from Eudragits® and poly(ethylene oxide)-based matrices and dry-coated tablets, Acta Pharm.70 (2020) 49–61; https://doi.org/10.2478/acph-2020-001010.2478/acph-2020-001031677367
DOI: https://doi.org/10.2478/acph-2020-0037 | Journal eISSN: 1846-9558 | Journal ISSN: 1330-0075
Language: English
Page range: 527 - 538
Accepted on: Dec 17, 2019
Published on: May 13, 2020
Published by: Croatian Pharmaceutical Society
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year
Related subjects:

© 2020 Marilena Vlachou, Angeliki Siamidi, Efstratia Goula, Panagiotis Georgas, Natassa Pippa, Vangelis Karalis, Theodore Sentoukas, Stergios Pispas, published by Croatian Pharmaceutical Society
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.