3. A. Kwiatkowska and W. Lewicka, New psychoactive substances and risky sexual behaviors: chemsex, teensex, slamsex, Świat Probl. (World of Problems)309 (2018) 7–10.
4. F. Schifano, L. Orsolini, G. D. Papanti and J. M. Corkery, Novel psychoactive substances of interest for psychiatry, World Psych.14 (2015) 15–26; https://doi.org/10.1002/wps.2017410.1002/wps.20174432988425655145
5. Y. Boumrah, M. Rosset, Y. Lecompte, S. Bouanani, K. Khimeche and A. Dahmani, Development of a targeted GC/MS screening method and validation of an HPLC/DAD quantification method for piperazines-amphetamines mixtures in seized material, Egypt. J. For. Sci.4 (2014) 90–99; https://doi.org/10.1016/j.ejfs.2014.03.00210.1016/j.ejfs.2014.03.002
6. C. D. Rosenbaum, S. P. Carreiro and K. M. Babu, Here today, gone tomorrow…and back again? A review of herbal marijuana alternatives (K2, Spice), synthetic cathinones (bath salts), kratom, Salvia divinorum, methoxetamine, and piperazines, J. Med. Toxicol.8 (2012) 15–32; https://doi.org/10.1007/s13181-011-0202-210.1007/s13181-011-0202-2355022022271566
8. Y. P. Gaillard, A. C. Cuquel, A. Boucher, L. Romeuf, F. Bevalot, J. M. Prevosto and J. M. Menard, A fatality following ingestion of the designer drug meta-chlorophenylpiperazine (mCPP) in an asthmatic – HPLC-MS/MS detection in biofluids and hair, J. For. Sci.58 (2013) 263–269; https://doi.org/10.1111/j.1556-4029.2012.02254.x10.1111/j.1556-4029.2012.02254.x23009714
9. D. De Berardis, G. Rapini, L. Olivieri, D. Di Nicola, C. Tomasetti, A. Valchera, M. Fornaro, F. Di Fabio, G. Perna, M. Di Nicola, G. Serafini, A. Carano, M. Pompili, F. Vellante, L. Orsolini, G. Martinotti and M. Di Giannantonio, Safety of antipsychotics for the treatment of schizophrenia: a focus on the adverse effects of clozapine, Ther. Adv. Drug Saf.9 (2018) 237–256; https://doi.org/10.1177/204209861875626110.1177/2042098618756261595695329796248
10. A. Pouliopoulos, E. Tsakelidou, A. Krokos, H. G. Gika, G. Theodoridis and N. Raikos, Quantification of 15 psychotropic drugs in serum and postmortem blood samples after a modified mini-QuEChERS by UHPLC–MS-MS, J. Anal. Toxicol.42 (2018) 337–345; https://doi.org/10.1093/jat/bky00610.1093/jat/bky00629373719
11. U. Hariharan, M. Hariharan, J. S. Naickar and R. Tandon, Determination of clozapine and its two major metabolites in human serum by liquid chromatography using ultraviolet detection, J. Liq. Chrom. Rel. Technol.19 (1996) 2409–2417; https://doi.org/10.1080/1082607960801402610.1080/10826079608014026
12. M. Pogorzała, J. Styczyński, K. Jankowska, A. Kurylak and M. Wysocki, Imatinib mesylate in treatment of childhood chronic myeloid leukaemia. Preliminary report, Med. W. Rozwoj. (Developmental Period Medicine) 10 (2006) 603–612.
13. A. Wojnicz, B. Colom-Fernández, J. L. Steegmann, C. Muñoz-Calleja, F. Abad-Santos and A. RuizNuño, Simultaneous Determination of imatinib, dasatinib, and nilotinib by liquid chromatographytandem mass spectrometry and its application to therapeutic drug monitoring, Ther. Drug Monit.39 (2017) 252–262; https://doi.org/10.1097/FTD.000000000000040610.1097/FTD.000000000000040628490048
14. M. Gackowski, M. Koba, K. Mądra-Gackowska and S. Kruszewski, Comparison of high-performance thin layer chromatography/UV-densitometry and UV-derivative spectrophotometry for the determination of trimetazidine in pharmaceutical formulations, Acta Pharm.69 (2019) 413–422; https://doi.org/10.2478/acph-2019-002810.2478/acph-2019-002831259733
15. L. Wang, Y. Zhang, X. Du, T. Ding, W. Gong and F. Liu, Review of antidepressants in clinic and active ingredients of traditional Chinese medicine targeting 5-HT1A receptors, Biomed. Pharmacother.120 (2019) 1–9; https://doi.org/10.1016/j.biopha.2019.10940810.1016/j.biopha.2019.10940831541883
16. D. M. Wood, L. De La Rue, A. A. Hosin, G. Jurgens, E. Liakoni, F. Heyerdahl, K. E. Hovda, A. Dines, I. Giraudon, M. E. Liechti and P. I. Dargan, Poor identification of emergency department acute recreational drug toxicity presentations using routine hospital coding systems: the experience in Denmark, Switzerland and the UK, J. Med. Toxicol.15 (2019) 112–120; https://doi.org/10.1007/s13181-018-0687-z10.1007/s13181-018-0687-z644092930603897
18. Y. Ren, J. Du, X. Du, G. Xin, J. Chang, H. Zhou and H. Hao, A novel analytical method of TFMPP and mCPP in fluids of drug addicts using LLE-GC/NPD, Tech. Health Care27 (2019) 67–84; https://doi.org/10.3233/THC-19900810.3233/THC-199008659798831045528
19. M. S. Castaneto, A. J. Barnes, M. Concheiro, K. L. Klette, T. A. Martin and M. A. Huestis, Biochip array technology immunoassay performance and quantitative confirmation of designer piperazines for urine workplace drug testing, Anal. Bioanal. Chem. 407 (2015) 4639–4648; https://doi.org/10.1007/s00216-015-8660-z10.1007/s00216-015-8660-z25903022
20. D. Zuba, B. Byrska, P. Pytka, K. Sekuła and R. Stanaszek, Mass Spectra of the Active Ingredients of Preparations of Designer Drugs (original title: Widma masowe składników aktywnych preparatów typu dopalacze), Institute of Forensic Research Publishers, Kraków 2011, pp. 197–221.
21. K. Persona, A. Polus, J. Góralska, A. Gruca, A. Dembińska-Kieć and W. Piekoszewski, An in vitro study of the neurotoxic effects of N-benzylpiperazine: a designer drug of abuse, Neurotox. Res.29 (2016) 558–568; https://doi.org/10.1007/s12640-016-9604-x10.1007/s12640-016-9604-x482048126861955
22. A. Zwartsen, L. Hondebrink and R. H. Westerink, Neurotoxicity screening of new psychoactive substances (NPS): Effects on neuronal activity in rat cortical cultures using microelectrode arrays (MEA), NeuroTox.66 (2018) 87–97; https://doi.org/10.1016/j.neuro.2018.03.00710.1016/j.neuro.2018.03.00729572046
23. A. Welz and M. Koba, Piperazine derivatives in designer drugs – compounds of great popularity and high risk for human health, Farm. Pol. 73 (2017) 487–494.
24. D. Dias da Silva, M. J. Silva, P. Moreira, M. J. Martins, M. J. Valente, F. Carvalho, M. L. Bastos and H. Carmo, In vitro hepatotoxicity of ‘Legal X’: the combination of 1-benzylpiperazine (BZP) and 1-(mtrifluoromethylphenyl)piperazine (TFMPP) triggers oxidative stress, mitochondrial impairment and apoptosis, Arch. Toxicol. 91 (2017) 1413–1430; https://doi.org/10.1007/s00204-016-1777-910.1007/s00204-016-1777-927358233
25. D. M. Wood, J. Button, S. Lidder, J. Ramsey, D. W. Holt and P. I. Dargan, Dissociative and sympathomimetic toxicity associated with recreational use of 1-(3-trifluoromethylphenyl)piperazine (TFMPP) and 1-benzylpiperazine (BZP), J. Med. Toxicol.4 (2008) 254–257; https://doi.org/10.1007/bf0316120910.1007/BF03161209355011219031377
28. H. Lee, G. Y. Wang, L. E. Curley, J. J. Sollers, R. R. Kydd, I. J. Kirk and B. R. Russell, Acute effects of BZP, TFMPP and the combination of BZP and TFMPP in comparison to dexamphetamine on an auditory oddball task using electroencephalography: a single-dose study, Psychopharmacology (Berlin) 233 (2016) 863–871; https://doi.org/10.1007/s00213-015-4165-x10.1007/s00213-015-4165-x26630992
31. S. W. Tang and W. H. Tang, Opportunities in novel psychotropic drug design from natural compounds, Int. J. Neuropsychopharmacol.22 (2019) 601–607; https://doi.org/10.1093/ijnp/pyz04210.1093/ijnp/pyz042675473331353393
34. E. Wadsworth, C. Drummond and P. Deluca, The dynamic environment of crypto markets: The lifespan of new psychoactive substances (NPS) and vendors selling NPS, Brain Sci.8 (2018) 1–9; https://doi.org/10.3390/brainsci803004610.3390/brainsci8030046587036429547520
35. J. Neicun, M. Steenhuizen, R. van Kessel, J. C. Yang, A. Negri, K. Czabanowska, O. Corazza and A. Roman-Urrestarazu, Mapping novel psychoactive substances policy in the EU: The case of Portugal, the Netherlands, Czech Republic, Poland, the United Kingdom and Sweden, Plos One14 (2019) 1–29; https://doi.org/10.1371/journal.pone.021801110.1371/journal.pone.0218011659460431242225
36. C. Görgens, S. Guddat, A. K. Orlovius, G. Sigmund, A. Thomas, M. Thevis and W. Schänzer, “Diluteand-inject” multi-target screening assay for highly polar doping agents using hydrophilic interaction liquid chromatography high resolution/high accuracy mass spectrometry for sports drug testing, Anal. Bioanal. Chem. 407 (2015) 5365–5379; https://doi.org/10.1007/s00216-015-8699-x10.1007/s00216-015-8699-x25925859
39. A. Zwartsen, C. H. C. Litjens, L. Hondebrink, J. J. M. W. van den Heuvel, R. Greupink, F. G. M. Russel, D. W. de Lange, J. Legler, J. B. Koenderink and R. H. S. Westerink, Differential effects of psychoactive substances on human wildtype and polymorphic T356M dopamine transporters (DAT), Toxicology422 (2019) 69–75; https://doi.org/10.1016/j.tox.2019.04.01210.1016/j.tox.2019.04.01231009648
40. M. A. Sahai, C. Davidson, N. Dutta and J. Opacka-Juffry, mechanistic insights into the stimulant properties of novel psychoactive substances (NPS) and their discrimination by the dopamine transporter-in silico and in vitro exploration of dissociative diarylethylamines, Brain Sci.8 (2018) 1–19; https://doi.org/10.3390/brainsci804006310.3390/brainsci8040063592439929642450
41. W. J. Scotton, L. J. Hill, A. C. Williams and N. M. Barnes, Serotonin syndrome: Pathophysiology, clinical features, management, and potential future directions, Int. J. Tryptophan Res.12 (2019) 1–14; https://doi.org/10.1177/117864691987392510.1177/1178646919873925673460831523132
42. A. C. Parrott, Mood fluctuation and psychobiological instability: The same core functions are disrupted by novel psychoactive substances and established recreational drugs, Brain Sci.8 (2018) 43; https://doi.org/10.3390/brainsci803004310.3390/brainsci8030043587036129533974
44. L. Orsolini, G. D. Papanti, D. De Berardis, A. Guirguis, J. M. Corkery and F. Schifano, The “Endless trip” among the NPS users: psychopathology and psychopharmacology in the hallucinogen-persisting perception disorder. A systematic review, Front. Psychiatry8 (2017) 1–10; https://doi.org/10.3389/fpsyt.2017.0024010.3389/fpsyt.2017.00240570199829209235
45. J. M. Thomas, C. T. Dourish, J. Tomlinson, Z. Hassan-Smith, P. C. Hansen and S. Higgs, The 5-HT2C receptor agonist meta-chlorophenylpiperazine (mCPP) reduces palatable food consumption and BOLD fMRI responses to food images in healthy female volunteers, Psychopharmacology235 (2018) 257–267; https://doi.org/10.1007/s00213-017-4764-910.1007/s00213-017-4764-9574841629080906
47. L. D. Simmler, A. Rickli, Y. Schramm, M. C. Hoener and M. E. Liechti, Pharmacological profiles of aminoindanes, piperazines, and pipradrol derivatives, Biochem. Pharmacol. 88 (2014) 237–244; https://doi.org/10.1016/j.bcp.2014.01.02410.1016/j.bcp.2014.01.02424486525
48. D. Luethi and M. E. Liechti, Monoamine transporter and receptor interaction profiles in vitro predict reported human doses of novel psychoactive stimulants and psychedelics, Int. J. Neuropsychopharmacol.21 (2018) 926–931; https://doi.org/10.1093/ijnp/pyy04710.1093/ijnp/pyy047616595129850881
49. K. T. Kirla, K. J. Groh, M. Poetzsch, R. K. Banote, J. Stadnicka-Michalak, R. I. L. Eggen, K. Schirmer and T. Kraemer, Importance of toxicokinetics to assess the utility of zebrafish larvae as model for psychoactive drug screening using meta-chlorophenylpiperazine (mCPP) as example, Front. Pharmacol.9 (2018) 1–12; https://doi.org/10.3389/fphar.2018.0041410.3389/fphar.2018.00414593257129755353
50. M. D. Arbo, R. Silva, D. J. Barbosa, D. D. Dias da Silva, L. G. Rossato, Mde L. Bastos and H. Carmo, Piperazine designer drugs induce toxicity in cardiomyoblast h9c2 cells through mitochondrial impairment, Toxicol. Lett. 229 (2014) 178–189; https://doi.org/10.1016/j.toxlet.2014.06.03110.1016/j.toxlet.2014.06.03124968061
52. A. Zwartsen, T. de Korte, P. Nacken, D. W. de Lange, R. H. S. Westerink and L. Hondebrink, Cardiotoxicity screening of illicit drugs and new psychoactive substances (NPS) in human iPSC-derived cardiomyocytes using microelectrode array (MEA) recordings, J. Mol. Cell. Cardiol.136 (2019) 102–112; https://doi.org/10.1016/j.yjmcc.2019.09.00710.1016/j.yjmcc.2019.09.00731526813
53. L. E. Curley, R. R. Kydd, I. J. Kirk and B. R. Russell, Differential responses to anticipation of reward after an acute dose of the designer drugs benzylpiperazine (BZP) and trifluoromethylphenylpiperazine (TFMPP) alone and in combination using functional magnetic resonance imaging (fMRI), Psychopharmacology229 (2013) 673–685; https://doi.org/10.1007/s00213-013-3128-310.1007/s00213-013-3128-323666554
54. T. Misiuro and Ł. Nikel, Event-related Potentials in Studies of Deception Detection, in Studies of Psychology in KUL, Publishing House of Catholic University of Lublin, Lublin 2012, Vol. 18, pp. 217–232.
55. D. Dias-da-Silva, M. D. Arbo, M. J. Valente, M. L. Bastos and H. Carmo, Hepatotoxicity of piperazine designer drugs: Comparison of different in vitro models, Toxicol. In Vitro29 (2015) 987–996; https://doi.org/10.1016/j.tiv.2015.04.00110.1016/j.tiv.2015.04.00125863214
56. C. Gu, C. S Elmore, J. Lin, D. Zhou, R. Luzietti, P. Dorff and S. W. Grimm, Metabolism of a G proteincoupled receptor modulator, including two major 1,2,4-oxadiazole ring-opened metabolites and a rearranged cysteine-piperazine adduct, Drug Metab. Dispos.40 (2012) 1151–1163; https://doi.org/10.1124/dmd.112.04463610.1124/dmd.112.04463622397852
57. C. R. Min, M. J. Kim, Y. J. Park, H. R. Kim, S. Y. Lee, K. H. Chung and S. M. Oh, Estrogenic effects and their action mechanism of the major active components of party pill drugs, Toxicol. Lett.214 (2012) 339–347; https://doi.org/10.1016/j.toxlet.2012.09.01410.1016/j.toxlet.2012.09.01423026265
58. M. J. Swortwood, D. M. Boland and A. P. DeCaprio, Determination of 32 cathinone derivatives and other designer drugs in serum by comprehensive LC-QQQ-MS/MS analysis, Anal. Bioanal. Chem. 405 (2013) 1383–1397; https://doi.org/10.1007/s00216-012-6548-810.1007/s00216-012-6548-823180084
59. M. Tang, C. K. Ching, M. L. Tse, C. Ng, C. Lee, Y. K. Chong, W. Wong and T. W. Mak, Surveillance of emerging drugs of abuse in Hong Kong: validation of an analytical tool, Hong Kong Med. J. 21 (2015) 114–123; https://doi.org/10.12809/hkmj14439810.12809/hkmj14439825756277
60. M. Paul, J. Ippisch, C. Herrmann, S. Guber and W. Schultis, Analysis of new designer drugs and common drugs of abuse in urine by a combined targeted and untargeted LC-HR-QTOFMS approach, Anal. Bioanal. Chem. 406 (2014) 4425–4441; https://doi.org/10.1007/s00216-014-7825-510.1007/s00216-014-7825-524828977
61. M. Concheiro, M. Castaneto, R. Kronstrand and M. A. Huestis, Simultaneous determination of 40 novel psychoactive stimulants in urine by liquid chromatography-high resolution mass spectrometry and library matching, J. Chromatogr. A1397 (2015) 32–42; https://doi.org/10.1016/j.chroma.2015.04.00210.1016/j.chroma.2015.04.002443376025931378
62. A. J. Dickson, S. P. Vorce, J. M. Holler and T. P. Lyons, Detection of 1-benzylpiperazine, 1-(3-trifluoromethylphenyl)-piperazine, and 1-(3-chlorophenyl)-piperazine in 3,4-methylenedioxymethamphetamine-positive urine samples, J. Anal. Toxicol. 34 (2010) 464–469; https://doi.org/10.1093/jat/34.8.46410.1093/jat/34.8.46421819791
64. N. M. Beckett, S. L. Cresswell, D. I. Grice and J. F. Carter, Isotopic profiling of seized benzylpiperazine and trifluoromethylphenylpiperazine tablets using δ13C and δ15N stable isotopes, Sci. Justice55 (2015) 51–56; https://doi.org/10.1016/j.scijus.2014.08.00310.1016/j.scijus.2014.08.00325577007
65. J. DeRuiter, A. Van Cleave, A. de Sousa Moura, Y. Abiedalla and C. R. Clark, Disubstituted piperazine analogues of trifluoromethylphenylpiperazine and methylenedioxybenzylpiperazine: analytical differentiation and serotonin receptor binding studies, Forensic Sci. Res.3 (2018) 161–169; https://doi.org/10.1080/20961790.2018.144549710.1080/20961790.2018.1445497619708930483665
66. C. Guillou, F. Reniero, J. Lobo Vicente, M. Holland, K. Kolar, H. Chassaigne, S. Tirendi and H. Schepers, Collaboration of the joint research centre and European customs laboratories for the identification of new psychoactive substances, Curr. Pharm. Biotechnol.19 (2018) 91–98; https://doi.org/10.2174/138920101966618052312271710.2174/1389201019666180523122717611004029792142
67. R. J. Waite, G. J. Barbante, N. W. Barnett, E. M. Zammit and P. S. Francis, Chemiluminescence detection of piperazine designer drugs and related compounds using tris(2,2′-bipyridine)ruthenium(III), Talanta116 (2013) 1067–1072; https://doi.org/10.1016/j.talanta.2013.08.02910.1016/j.talanta.2013.08.02924148517
70. M. Philp, R. Shimmon, N. Stojanovska, M. Tahtouh and S. Fu, Development and validation of a presumptive colour spot test method for the detection of piperazine analogues in seized illicit materials, Anal. Meth. 5 (2013) 5402–5410; https://doi.org/10.1039/c3ay40511g10.1039/c3ay40511g
71. S. A. Waddell, C. Fernandez, C. C. Inverarity and R. Prabhu, Extending the capability of forensic electrochemistry to the novel psychoactive substance benzylpiperazine, Sens. Bio-Sens. Res. 13 (2017) 28–39.10.1016/j.sbsr.2016.12.001
72. S. C. Bishop, B. R. McCord, S. R. Gratz, J. R. Loeliger and M. R. Witkowski, Simultaneous separation of different types of amphetamine and piperazine designer drugs by capillary electrophoresis with a chiral selector, J. Forensic Sci. 50 (2005) 1–10; https://doi.org/10.1520/JFS200423910.1520/JFS2004239
73. P. D. Maskell, L. N. Seetohul, A. C. Livingstone, A. K. Cockburn, J. Preece and D. J. Pounder, Stability of 3,4-methylenedioxymethampetamine (MDMA), 4-methylmethcathinone (mephedrone) and 3-tri-fluoromethylphenylpiperazine (3-TFMPP) in formalin solution, J. Anal. Toxicol.37 (2013) 440–446; https://doi.org/10.1093/jat/bkt05110.1093/jat/bkt05123861339
75. R. D. Johnson and S. R. Botch-Jones, The stability of four designer drugs: MDPV, mephedrone, BZP and TFMPP in three biological matrices under various storage conditions, J. Anal. Toxicol.37 (2013) 51–55; https://doi.org/10.1093/jat/bks13810.1093/jat/bks13823325764