Have a personal or library account? Click to login

Piperazine derivatives as dangerous abused compounds

By:
Open Access
|May 2020

References

  1. 1. B. P. Kersten and M. E. McLaughlin, Toxicology and management of novel psychoactive drugs, J. Pharm.28 (2015) 50–65; https://doi.org/10.1177/089719001454481410.1177/089719001454481425261428
  2. 2. D. P. Katz, J. Deruiter, D. Bhattacharya, M. Ahuja, S. Bhattacharya and C. R. Clark, Benzylpiperazine: “A messy drug”, Drug Alc. Dep.164 (2016) 1–7; https://doi.org/10.1016/j.drugalcdep.2016.04.01010.1016/j.drugalcdep.2016.04.01027207154
  3. 3. A. Kwiatkowska and W. Lewicka, New psychoactive substances and risky sexual behaviors: chemsex, teensex, slamsex, Świat Probl. (World of Problems)309 (2018) 7–10.
  4. 4. F. Schifano, L. Orsolini, G. D. Papanti and J. M. Corkery, Novel psychoactive substances of interest for psychiatry, World Psych.14 (2015) 15–26; https://doi.org/10.1002/wps.2017410.1002/wps.20174432988425655145
  5. 5. Y. Boumrah, M. Rosset, Y. Lecompte, S. Bouanani, K. Khimeche and A. Dahmani, Development of a targeted GC/MS screening method and validation of an HPLC/DAD quantification method for piperazines-amphetamines mixtures in seized material, Egypt. J. For. Sci.4 (2014) 90–99; https://doi.org/10.1016/j.ejfs.2014.03.00210.1016/j.ejfs.2014.03.002
  6. 6. C. D. Rosenbaum, S. P. Carreiro and K. M. Babu, Here today, gone tomorrow…and back again? A review of herbal marijuana alternatives (K2, Spice), synthetic cathinones (bath salts), kratom, Salvia divinorum, methoxetamine, and piperazines, J. Med. Toxicol.8 (2012) 15–32; https://doi.org/10.1007/s13181-011-0202-210.1007/s13181-011-0202-2355022022271566
  7. 7. M. D. Arbo, M. L. Bastos and H. F. Carmo, Piperazine compounds as drugs of abuse, Drug Alc. Dep.122 (2012) 174–185; https://doi.org/10.1016/j.drugalcdep.2011.10.00710.1016/j.drugalcdep.2011.10.00722071119
  8. 8. Y. P. Gaillard, A. C. Cuquel, A. Boucher, L. Romeuf, F. Bevalot, J. M. Prevosto and J. M. Menard, A fatality following ingestion of the designer drug meta-chlorophenylpiperazine (mCPP) in an asthmatic – HPLC-MS/MS detection in biofluids and hair, J. For. Sci.58 (2013) 263–269; https://doi.org/10.1111/j.1556-4029.2012.02254.x10.1111/j.1556-4029.2012.02254.x23009714
  9. 9. D. De Berardis, G. Rapini, L. Olivieri, D. Di Nicola, C. Tomasetti, A. Valchera, M. Fornaro, F. Di Fabio, G. Perna, M. Di Nicola, G. Serafini, A. Carano, M. Pompili, F. Vellante, L. Orsolini, G. Martinotti and M. Di Giannantonio, Safety of antipsychotics for the treatment of schizophrenia: a focus on the adverse effects of clozapine, Ther. Adv. Drug Saf.9 (2018) 237–256; https://doi.org/10.1177/204209861875626110.1177/2042098618756261595695329796248
  10. 10. A. Pouliopoulos, E. Tsakelidou, A. Krokos, H. G. Gika, G. Theodoridis and N. Raikos, Quantification of 15 psychotropic drugs in serum and postmortem blood samples after a modified mini-QuEChERS by UHPLC–MS-MS, J. Anal. Toxicol.42 (2018) 337–345; https://doi.org/10.1093/jat/bky00610.1093/jat/bky00629373719
  11. 11. U. Hariharan, M. Hariharan, J. S. Naickar and R. Tandon, Determination of clozapine and its two major metabolites in human serum by liquid chromatography using ultraviolet detection, J. Liq. Chrom. Rel. Technol.19 (1996) 2409–2417; https://doi.org/10.1080/1082607960801402610.1080/10826079608014026
  12. 12. M. Pogorzała, J. Styczyński, K. Jankowska, A. Kurylak and M. Wysocki, Imatinib mesylate in treatment of childhood chronic myeloid leukaemia. Preliminary report, Med. W. Rozwoj. (Developmental Period Medicine) 10 (2006) 603–612.
  13. 13. A. Wojnicz, B. Colom-Fernández, J. L. Steegmann, C. Muñoz-Calleja, F. Abad-Santos and A. RuizNuño, Simultaneous Determination of imatinib, dasatinib, and nilotinib by liquid chromatographytandem mass spectrometry and its application to therapeutic drug monitoring, Ther. Drug Monit.39 (2017) 252–262; https://doi.org/10.1097/FTD.000000000000040610.1097/FTD.000000000000040628490048
  14. 14. M. Gackowski, M. Koba, K. Mądra-Gackowska and S. Kruszewski, Comparison of high-performance thin layer chromatography/UV-densitometry and UV-derivative spectrophotometry for the determination of trimetazidine in pharmaceutical formulations, Acta Pharm.69 (2019) 413–422; https://doi.org/10.2478/acph-2019-002810.2478/acph-2019-002831259733
  15. 15. L. Wang, Y. Zhang, X. Du, T. Ding, W. Gong and F. Liu, Review of antidepressants in clinic and active ingredients of traditional Chinese medicine targeting 5-HT1A receptors, Biomed. Pharmacother.120 (2019) 1–9; https://doi.org/10.1016/j.biopha.2019.10940810.1016/j.biopha.2019.10940831541883
  16. 16. D. M. Wood, L. De La Rue, A. A. Hosin, G. Jurgens, E. Liakoni, F. Heyerdahl, K. E. Hovda, A. Dines, I. Giraudon, M. E. Liechti and P. I. Dargan, Poor identification of emergency department acute recreational drug toxicity presentations using routine hospital coding systems: the experience in Denmark, Switzerland and the UK, J. Med. Toxicol.15 (2019) 112–120; https://doi.org/10.1007/s13181-018-0687-z10.1007/s13181-018-0687-z644092930603897
  17. 17. M. S. Monteiro, M. de Lourdes Bastos, P. Guedes de Pinho and M. Carvalho, Update on 1-benzylpiperazine (BZP) party pills, Arch. Toxicol. 87 (2013) 929–947; https://doi.org/10.1007/s00204-013-1057-x10.1007/s00204-013-1057-x23685794
  18. 18. Y. Ren, J. Du, X. Du, G. Xin, J. Chang, H. Zhou and H. Hao, A novel analytical method of TFMPP and mCPP in fluids of drug addicts using LLE-GC/NPD, Tech. Health Care27 (2019) 67–84; https://doi.org/10.3233/THC-19900810.3233/THC-199008659798831045528
  19. 19. M. S. Castaneto, A. J. Barnes, M. Concheiro, K. L. Klette, T. A. Martin and M. A. Huestis, Biochip array technology immunoassay performance and quantitative confirmation of designer piperazines for urine workplace drug testing, Anal. Bioanal. Chem. 407 (2015) 4639–4648; https://doi.org/10.1007/s00216-015-8660-z10.1007/s00216-015-8660-z25903022
  20. 20. D. Zuba, B. Byrska, P. Pytka, K. Sekuła and R. Stanaszek, Mass Spectra of the Active Ingredients of Preparations of Designer Drugs (original title: Widma masowe składników aktywnych preparatów typu dopalacze), Institute of Forensic Research Publishers, Kraków 2011, pp. 197–221.
  21. 21. K. Persona, A. Polus, J. Góralska, A. Gruca, A. Dembińska-Kieć and W. Piekoszewski, An in vitro study of the neurotoxic effects of N-benzylpiperazine: a designer drug of abuse, Neurotox. Res.29 (2016) 558–568; https://doi.org/10.1007/s12640-016-9604-x10.1007/s12640-016-9604-x482048126861955
  22. 22. A. Zwartsen, L. Hondebrink and R. H. Westerink, Neurotoxicity screening of new psychoactive substances (NPS): Effects on neuronal activity in rat cortical cultures using microelectrode arrays (MEA), NeuroTox.66 (2018) 87–97; https://doi.org/10.1016/j.neuro.2018.03.00710.1016/j.neuro.2018.03.00729572046
  23. 23. A. Welz and M. Koba, Piperazine derivatives in designer drugs – compounds of great popularity and high risk for human health, Farm. Pol. 73 (2017) 487–494.
  24. 24. D. Dias da Silva, M. J. Silva, P. Moreira, M. J. Martins, M. J. Valente, F. Carvalho, M. L. Bastos and H. Carmo, In vitro hepatotoxicity of ‘Legal X’: the combination of 1-benzylpiperazine (BZP) and 1-(mtrifluoromethylphenyl)piperazine (TFMPP) triggers oxidative stress, mitochondrial impairment and apoptosis, Arch. Toxicol. 91 (2017) 1413–1430; https://doi.org/10.1007/s00204-016-1777-910.1007/s00204-016-1777-927358233
  25. 25. D. M. Wood, J. Button, S. Lidder, J. Ramsey, D. W. Holt and P. I. Dargan, Dissociative and sympathomimetic toxicity associated with recreational use of 1-(3-trifluoromethylphenyl)piperazine (TFMPP) and 1-benzylpiperazine (BZP), J. Med. Toxicol.4 (2008) 254–257; https://doi.org/10.1007/bf0316120910.1007/BF03161209355011219031377
  26. 26. M. E. Musselman and J. P. Hampton, “Not for human consumption”: A review of emerging designer drugs, Pharmacotherapy 34 (2014) 745–757; https://doi.org/10.1002/phar.142410.1002/phar.142424710806
  27. 27. B. M. Cohen and R. Butler, BZP-party pills: A review of research on benzylpiperazine as a recreational drug, Int. J. Drug Policy22 (2011) 95–101; https://doi.org/10.1016/j.drugpo.2010.12.00210.1016/j.drugpo.2010.12.00221242080
  28. 28. H. Lee, G. Y. Wang, L. E. Curley, J. J. Sollers, R. R. Kydd, I. J. Kirk and B. R. Russell, Acute effects of BZP, TFMPP and the combination of BZP and TFMPP in comparison to dexamphetamine on an auditory oddball task using electroencephalography: a single-dose study, Psychopharmacology (Berlin) 233 (2016) 863–871; https://doi.org/10.1007/s00213-015-4165-x10.1007/s00213-015-4165-x26630992
  29. 29. M. G. Fitzsimons, Y. Ishizawa and K. H. Baker, Drug testing physicians for substances of abuse: case report of false-positive result, J. Clin. Anesth. 25 (2013) 669–671; https://doi.org/10.1016/j.jclinane.2013.05.00910.1016/j.jclinane.2013.05.00923988805
  30. 30. J. Jaroszyński, M. Roszkowska and H. Plata, Designer drugs – a threat whether already plague? Part 1, Farm. Pol. 72 (2016) 342–347.
  31. 31. S. W. Tang and W. H. Tang, Opportunities in novel psychotropic drug design from natural compounds, Int. J. Neuropsychopharmacol.22 (2019) 601–607; https://doi.org/10.1093/ijnp/pyz04210.1093/ijnp/pyz042675473331353393
  32. 32. European Monitoring Centre for Drugs and Drug Addiction, European Drug Report: Trends and Developments – 2017, EMCDDA, Publications Office of the European Union, Luxembourg 2017, pp. 34; http://www.emcdda.europa.eu/system/files/publications/4541/TDAT17001ENN.pdf
  33. 33. F. Schifano, Recent changes in drug abuse scenarios: The new/novel psychoactive substances (NPS) phenomenon, Brain Sci.8 (2018) 1–3; https://doi.org/10.3390/brainsci812022110.3390/brainsci8120221631677330551554
  34. 34. E. Wadsworth, C. Drummond and P. Deluca, The dynamic environment of crypto markets: The lifespan of new psychoactive substances (NPS) and vendors selling NPS, Brain Sci.8 (2018) 1–9; https://doi.org/10.3390/brainsci803004610.3390/brainsci8030046587036429547520
  35. 35. J. Neicun, M. Steenhuizen, R. van Kessel, J. C. Yang, A. Negri, K. Czabanowska, O. Corazza and A. Roman-Urrestarazu, Mapping novel psychoactive substances policy in the EU: The case of Portugal, the Netherlands, Czech Republic, Poland, the United Kingdom and Sweden, Plos One14 (2019) 1–29; https://doi.org/10.1371/journal.pone.021801110.1371/journal.pone.0218011659460431242225
  36. 36. C. Görgens, S. Guddat, A. K. Orlovius, G. Sigmund, A. Thomas, M. Thevis and W. Schänzer, “Diluteand-inject” multi-target screening assay for highly polar doping agents using hydrophilic interaction liquid chromatography high resolution/high accuracy mass spectrometry for sports drug testing, Anal. Bioanal. Chem. 407 (2015) 5365–5379; https://doi.org/10.1007/s00216-015-8699-x10.1007/s00216-015-8699-x25925859
  37. 37. C. Wilkins and P. Sweetsur, The impact of the prohibition of benzylpiperazine ( BZP ) ‘legal highs’ on the prevalence of BZP, new legal highs and other drug use in New Zealand, Drug Alc. Dep. 127 (2013) 72–80; https://doi.org/10.1016/j.drugalcdep.2014.07.01110.1016/j.drugalcdep.2014.07.01125213143
  38. 38. L. Hondebrink, A. Zwartsen and R. H. S. Westerink, Effect fingerprinting of new psychoactive substances (NPS): What can we learn from in vitro data? Pharmacol. Ther. 182 (2018) 193–224; https://doi.org/10.1016/j.pharmthera.2017.10.02210.1016/j.pharmthera.2017.10.02229097307
  39. 39. A. Zwartsen, C. H. C. Litjens, L. Hondebrink, J. J. M. W. van den Heuvel, R. Greupink, F. G. M. Russel, D. W. de Lange, J. Legler, J. B. Koenderink and R. H. S. Westerink, Differential effects of psychoactive substances on human wildtype and polymorphic T356M dopamine transporters (DAT), Toxicology422 (2019) 69–75; https://doi.org/10.1016/j.tox.2019.04.01210.1016/j.tox.2019.04.01231009648
  40. 40. M. A. Sahai, C. Davidson, N. Dutta and J. Opacka-Juffry, mechanistic insights into the stimulant properties of novel psychoactive substances (NPS) and their discrimination by the dopamine transporter-in silico and in vitro exploration of dissociative diarylethylamines, Brain Sci.8 (2018) 1–19; https://doi.org/10.3390/brainsci804006310.3390/brainsci8040063592439929642450
  41. 41. W. J. Scotton, L. J. Hill, A. C. Williams and N. M. Barnes, Serotonin syndrome: Pathophysiology, clinical features, management, and potential future directions, Int. J. Tryptophan Res.12 (2019) 1–14; https://doi.org/10.1177/117864691987392510.1177/1178646919873925673460831523132
  42. 42. A. C. Parrott, Mood fluctuation and psychobiological instability: The same core functions are disrupted by novel psychoactive substances and established recreational drugs, Brain Sci.8 (2018) 43; https://doi.org/10.3390/brainsci803004310.3390/brainsci8030043587036129533974
  43. 43. C. D. Smith and S. Robert, ‘Designer drugs’: update on the management of novel psychoactive substance misuse in the acute care setting, Clin. Med. 14 (2014) 409–415; https://doi.org/10.7861/clinmedicine.14-4-40910.7861/clinmedicine.14-4-409495283625099844
  44. 44. L. Orsolini, G. D. Papanti, D. De Berardis, A. Guirguis, J. M. Corkery and F. Schifano, The “Endless trip” among the NPS users: psychopathology and psychopharmacology in the hallucinogen-persisting perception disorder. A systematic review, Front. Psychiatry8 (2017) 1–10; https://doi.org/10.3389/fpsyt.2017.0024010.3389/fpsyt.2017.00240570199829209235
  45. 45. J. M. Thomas, C. T. Dourish, J. Tomlinson, Z. Hassan-Smith, P. C. Hansen and S. Higgs, The 5-HT2C receptor agonist meta-chlorophenylpiperazine (mCPP) reduces palatable food consumption and BOLD fMRI responses to food images in healthy female volunteers, Psychopharmacology235 (2018) 257–267; https://doi.org/10.1007/s00213-017-4764-910.1007/s00213-017-4764-9574841629080906
  46. 46. D. E. Felsing, C. E. Canal and R. G. Booth, Ligand-directed serotonin 5-HT2C receptor desensitization and sensitization, Eur. J. Pharmacol.848 (2019) 131–139 https://doi.org/10.1016/j.ejphar.2019.01.03710.1016/j.ejphar.2019.01.037676791930689993
  47. 47. L. D. Simmler, A. Rickli, Y. Schramm, M. C. Hoener and M. E. Liechti, Pharmacological profiles of aminoindanes, piperazines, and pipradrol derivatives, Biochem. Pharmacol. 88 (2014) 237–244; https://doi.org/10.1016/j.bcp.2014.01.02410.1016/j.bcp.2014.01.02424486525
  48. 48. D. Luethi and M. E. Liechti, Monoamine transporter and receptor interaction profiles in vitro predict reported human doses of novel psychoactive stimulants and psychedelics, Int. J. Neuropsychopharmacol.21 (2018) 926–931; https://doi.org/10.1093/ijnp/pyy04710.1093/ijnp/pyy047616595129850881
  49. 49. K. T. Kirla, K. J. Groh, M. Poetzsch, R. K. Banote, J. Stadnicka-Michalak, R. I. L. Eggen, K. Schirmer and T. Kraemer, Importance of toxicokinetics to assess the utility of zebrafish larvae as model for psychoactive drug screening using meta-chlorophenylpiperazine (mCPP) as example, Front. Pharmacol.9 (2018) 1–12; https://doi.org/10.3389/fphar.2018.0041410.3389/fphar.2018.00414593257129755353
  50. 50. M. D. Arbo, R. Silva, D. J. Barbosa, D. D. Dias da Silva, L. G. Rossato, Mde L. Bastos and H. Carmo, Piperazine designer drugs induce toxicity in cardiomyoblast h9c2 cells through mitochondrial impairment, Toxicol. Lett. 229 (2014) 178–189; https://doi.org/10.1016/j.toxlet.2014.06.03110.1016/j.toxlet.2014.06.03124968061
  51. 51. G. Repetto, A. del Peso and J. L. Zurita, Neutral red uptake assay for the estimation of cell viability/cytotoxicity, Nat. Protoc. 3 (2008) 1125–1131; https://doi.org/10.1038/nprot.2008.7510.1038/nprot.2008.7518600217
  52. 52. A. Zwartsen, T. de Korte, P. Nacken, D. W. de Lange, R. H. S. Westerink and L. Hondebrink, Cardiotoxicity screening of illicit drugs and new psychoactive substances (NPS) in human iPSC-derived cardiomyocytes using microelectrode array (MEA) recordings, J. Mol. Cell. Cardiol.136 (2019) 102–112; https://doi.org/10.1016/j.yjmcc.2019.09.00710.1016/j.yjmcc.2019.09.00731526813
  53. 53. L. E. Curley, R. R. Kydd, I. J. Kirk and B. R. Russell, Differential responses to anticipation of reward after an acute dose of the designer drugs benzylpiperazine (BZP) and trifluoromethylphenylpiperazine (TFMPP) alone and in combination using functional magnetic resonance imaging (fMRI), Psychopharmacology229 (2013) 673–685; https://doi.org/10.1007/s00213-013-3128-310.1007/s00213-013-3128-323666554
  54. 54. T. Misiuro and Ł. Nikel, Event-related Potentials in Studies of Deception Detection, in Studies of Psychology in KUL, Publishing House of Catholic University of Lublin, Lublin 2012, Vol. 18, pp. 217–232.
  55. 55. D. Dias-da-Silva, M. D. Arbo, M. J. Valente, M. L. Bastos and H. Carmo, Hepatotoxicity of piperazine designer drugs: Comparison of different in vitro models, Toxicol. In Vitro29 (2015) 987–996; https://doi.org/10.1016/j.tiv.2015.04.00110.1016/j.tiv.2015.04.00125863214
  56. 56. C. Gu, C. S Elmore, J. Lin, D. Zhou, R. Luzietti, P. Dorff and S. W. Grimm, Metabolism of a G proteincoupled receptor modulator, including two major 1,2,4-oxadiazole ring-opened metabolites and a rearranged cysteine-piperazine adduct, Drug Metab. Dispos.40 (2012) 1151–1163; https://doi.org/10.1124/dmd.112.04463610.1124/dmd.112.04463622397852
  57. 57. C. R. Min, M. J. Kim, Y. J. Park, H. R. Kim, S. Y. Lee, K. H. Chung and S. M. Oh, Estrogenic effects and their action mechanism of the major active components of party pill drugs, Toxicol. Lett.214 (2012) 339–347; https://doi.org/10.1016/j.toxlet.2012.09.01410.1016/j.toxlet.2012.09.01423026265
  58. 58. M. J. Swortwood, D. M. Boland and A. P. DeCaprio, Determination of 32 cathinone derivatives and other designer drugs in serum by comprehensive LC-QQQ-MS/MS analysis, Anal. Bioanal. Chem. 405 (2013) 1383–1397; https://doi.org/10.1007/s00216-012-6548-810.1007/s00216-012-6548-823180084
  59. 59. M. Tang, C. K. Ching, M. L. Tse, C. Ng, C. Lee, Y. K. Chong, W. Wong and T. W. Mak, Surveillance of emerging drugs of abuse in Hong Kong: validation of an analytical tool, Hong Kong Med. J. 21 (2015) 114–123; https://doi.org/10.12809/hkmj14439810.12809/hkmj14439825756277
  60. 60. M. Paul, J. Ippisch, C. Herrmann, S. Guber and W. Schultis, Analysis of new designer drugs and common drugs of abuse in urine by a combined targeted and untargeted LC-HR-QTOFMS approach, Anal. Bioanal. Chem. 406 (2014) 4425–4441; https://doi.org/10.1007/s00216-014-7825-510.1007/s00216-014-7825-524828977
  61. 61. M. Concheiro, M. Castaneto, R. Kronstrand and M. A. Huestis, Simultaneous determination of 40 novel psychoactive stimulants in urine by liquid chromatography-high resolution mass spectrometry and library matching, J. Chromatogr. A1397 (2015) 32–42; https://doi.org/10.1016/j.chroma.2015.04.00210.1016/j.chroma.2015.04.002443376025931378
  62. 62. A. J. Dickson, S. P. Vorce, J. M. Holler and T. P. Lyons, Detection of 1-benzylpiperazine, 1-(3-trifluoromethylphenyl)-piperazine, and 1-(3-chlorophenyl)-piperazine in 3,4-methylenedioxymethamphetamine-positive urine samples, J. Anal. Toxicol. 34 (2010) 464–469; https://doi.org/10.1093/jat/34.8.46410.1093/jat/34.8.46421819791
  63. 63. B. Byrska, D. Zuba and R. Stanaszek, Determination of piperazine derivatives in “legal highs”, Probl. Forensic Sci. 81 (2010) 101–113; http://www.forensicscience.pl/pfs/81_byrska.pdf
  64. 64. N. M. Beckett, S. L. Cresswell, D. I. Grice and J. F. Carter, Isotopic profiling of seized benzylpiperazine and trifluoromethylphenylpiperazine tablets using δ13C and δ15N stable isotopes, Sci. Justice55 (2015) 51–56; https://doi.org/10.1016/j.scijus.2014.08.00310.1016/j.scijus.2014.08.00325577007
  65. 65. J. DeRuiter, A. Van Cleave, A. de Sousa Moura, Y. Abiedalla and C. R. Clark, Disubstituted piperazine analogues of trifluoromethylphenylpiperazine and methylenedioxybenzylpiperazine: analytical differentiation and serotonin receptor binding studies, Forensic Sci. Res.3 (2018) 161–169; https://doi.org/10.1080/20961790.2018.144549710.1080/20961790.2018.1445497619708930483665
  66. 66. C. Guillou, F. Reniero, J. Lobo Vicente, M. Holland, K. Kolar, H. Chassaigne, S. Tirendi and H. Schepers, Collaboration of the joint research centre and European customs laboratories for the identification of new psychoactive substances, Curr. Pharm. Biotechnol.19 (2018) 91–98; https://doi.org/10.2174/138920101966618052312271710.2174/1389201019666180523122717611004029792142
  67. 67. R. J. Waite, G. J. Barbante, N. W. Barnett, E. M. Zammit and P. S. Francis, Chemiluminescence detection of piperazine designer drugs and related compounds using tris(2,2′-bipyridine)ruthenium(III), Talanta116 (2013) 1067–1072; https://doi.org/10.1016/j.talanta.2013.08.02910.1016/j.talanta.2013.08.02924148517
  68. 68. K. A. Kovar and M. Laudszun, Chemistry and reaction mechanisms of rapid tests for drugs of abuse and precursors chemicals, United Nations – Scientific and Technical Notes – SCITEC/6, February 1989, Vol. 89-51669, pp. 1–19; https://mafiadoc.com/chemistry-and-reaction-mechanisms-of-rapidtests_5a1f0c171723dd457b42455f.html
  69. 69. L. Elie, M. Baron, R. Croxton and M. Elie, Microcrystalline identification of selected designer drugs, Forensic Sci. Int. 214 (2012) 182–188; https://doi.org/10.1016/j.forsciint.2011.08.00510.1016/j.forsciint.2011.08.00521889275
  70. 70. M. Philp, R. Shimmon, N. Stojanovska, M. Tahtouh and S. Fu, Development and validation of a presumptive colour spot test method for the detection of piperazine analogues in seized illicit materials, Anal. Meth. 5 (2013) 5402–5410; https://doi.org/10.1039/c3ay40511g10.1039/c3ay40511g
  71. 71. S. A. Waddell, C. Fernandez, C. C. Inverarity and R. Prabhu, Extending the capability of forensic electrochemistry to the novel psychoactive substance benzylpiperazine, Sens. Bio-Sens. Res. 13 (2017) 28–39.10.1016/j.sbsr.2016.12.001
  72. 72. S. C. Bishop, B. R. McCord, S. R. Gratz, J. R. Loeliger and M. R. Witkowski, Simultaneous separation of different types of amphetamine and piperazine designer drugs by capillary electrophoresis with a chiral selector, J. Forensic Sci. 50 (2005) 1–10; https://doi.org/10.1520/JFS200423910.1520/JFS2004239
  73. 73. P. D. Maskell, L. N. Seetohul, A. C. Livingstone, A. K. Cockburn, J. Preece and D. J. Pounder, Stability of 3,4-methylenedioxymethampetamine (MDMA), 4-methylmethcathinone (mephedrone) and 3-tri-fluoromethylphenylpiperazine (3-TFMPP) in formalin solution, J. Anal. Toxicol.37 (2013) 440–446; https://doi.org/10.1093/jat/bkt05110.1093/jat/bkt05123861339
  74. 74. D. S. Wenholz, S. Luong, M. Philp, S. L. Forbes, B. H. Stuart, O. H. Drummer and S. Fu, A study to model the post-mortem stability of 4-MMC, MDMA and BZP in putrefying remains, For. Sci. Int.265 (2016) 54–60; https://doi.org/10.1016/j.forsciint.2016.01.00610.1016/j.forsciint.2016.01.00626829335
  75. 75. R. D. Johnson and S. R. Botch-Jones, The stability of four designer drugs: MDPV, mephedrone, BZP and TFMPP in three biological matrices under various storage conditions, J. Anal. Toxicol.37 (2013) 51–55; https://doi.org/10.1093/jat/bks13810.1093/jat/bks13823325764
  76. 76. T. Lau, R. LeBlanc and S. Botch-Jones, Stability of synthetic piperazines in human whole blood, J. Anal. Toxicol.42 (2018) 88–98; https://doi.org/10.1093/jat/bkx09010.1093/jat/bkx09029186530
DOI: https://doi.org/10.2478/acph-2020-0035 | Journal eISSN: 1846-9558 | Journal ISSN: 1330-0075
Language: English
Page range: 423 - 441
Accepted on: Dec 3, 2019
Published on: May 13, 2020
Published by: Croatian Pharmaceutical Society
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year
Related subjects:

© 2020 Anna Welz, Marcin Koba, published by Croatian Pharmaceutical Society
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.