Have a personal or library account? Click to login

Modulatory effects of perindopril on cisplatin-induced nephrotoxicity in mice: Implication of inflammatory cytokines and caspase-3 mediated apoptosis

Open Access
|May 2020

References

  1. 1. S. Dasari and P. B. Tchounwou, Cisplatin in cancer therapy: molecular mechanisms of action, Eur. J. Pharmacol.740 (2014) 364–378; https://doi.org/10.1016/j.ejphar.2014.07.02510.1016/j.ejphar.2014.07.025
  2. 2. I. Arany and R. L. Safirstein, Cisplatin nephrotoxicity, Semin. Nephrol.23 (2003) 460–464; https://doi.org/10.1016/S0270-9295(03)00089-510.1016/S0270-9295(03)00089-5
  3. 3. A. Shiraishi, K. Sakumi and M. Sekiguchi, Increased susceptibility to chemotherapeutic alkylating agents of mice deficient in DNA repair methyltransferase, Carcinogenesis21 (2000) 1879–1883; https://doi.org/10.1093/carcin/21.10.187910.1093/carcin/21.10.187911023546
  4. 4. N. Pabla and Z. Dong, Cisplatin nephrotoxicity: mechanisms and renoprotective strategies, Kidney Int.73 (2008) 994–1007; https://doi.org/10.1038/sj.ki.500278610.1038/sj.ki.500278618272962
  5. 5. P. D. Sanchez-Gonzalez, F. J. Lopez-Hernandez, J. M. Lopez-Novoa and A. I. Morales, An integrative view of the pathophysiological events leading to cisplatin nephrotoxicity, Crit. Rev. Toxicol.41 (2011) 803–821; https://doi.org/10.3109/10408444.2011.60266210.3109/10408444.2011.60266221838551
  6. 6. G. Daugaard, U. Abildgaard, N. H. Holstein-Rathlou, I. Bruunshuus, D. Bucher and P. P. Leyssac, Renal tubular function in patients treated with high-dose cisplatin, Clin. Pharmacol. Ther.44 (1988) 164–172; https://doi.org/10.1038/clpt.1988.13210.1038/clpt.1988.1322840230
  7. 7. A. M. Abdelrahman, Y. Al Suleimani, A. Shalaby, M. Ashique, P. Manoj, A. Nemmar and B. H. Ali, Effect of canagliflozin, a sodium glucose co-transporter 2 inhibitor, on cisplatin-induced nephrotoxicity in mice, Naunyn. Schmiedebergs Arch. Pharmacol. (2018); https://doi.org/10.1007/s00210-018-1564-710.1007/s00210-018-1564-730206656
  8. 8. G. J. Dugbartey, L. J. Peppone and I. A. de Graaf, An integrative view of cisplatin-induced renal and cardiac toxicities: Molecular mechanisms, current treatment challenges and potential protective measures, Toxicology371 (2016) 58–66; https://doi.org/10.1016/j.tox.2016.10.00110.1016/j.tox.2016.10.001558659427717837
  9. 9. C. N. Sharp and L. J. Siskind, Developing better mouse models to study cisplatin-induced kidney injury, Am. J. Physiol. Renal Physiol.313 (2017) F835-f841; https://doi.org/10.1152/ajprenal.00285.201710.1152/ajprenal.00285.2017566858228724610
  10. 10. M. Hurst and B. Jarvis, Perindopril: an updated review of its use in hypertension, Drugs61 (2001) 867–896; https://doi.org/10.2165/00003495-200161060-0002010.2165/00003495-200161060-0002011398915
  11. 11. P. A. Todd and A. Fitton, Perindopril. A review of its pharmacological properties and therapeutic use in cardiovascular disorders, Drugs42 (1991) 90–114; https://doi.org/10.2165/00003495-199142010-0000610.2165/00003495-199142010-000061718688
  12. 12. E. M. de Cavanagh, F. Inserra and L. Ferder, Angiotensin II blockade: a strategy to slow ageing by protecting mitochondria?, Cardiovasc Res.89 (2011) 31–40; https://doi.org/10.1093/cvr/cvq28510.1093/cvr/cvq28520819950
  13. 13. E. A. M. El-Shoura, B. A. S. Messiha, S. M. Z. Sharkawi and R. A. M. Hemeida, Perindopril ameliorates lipopolysaccharide-induced brain injury through modulation of angiotensin-II/angiotensin-1-7 and related signaling pathways, Eur. J. Pharmacol.834 (2018) 305–317; https://doi.org/10.1016/j.ejphar.2018.07.04610.1016/j.ejphar.2018.07.04630059682
  14. 14. N. E. Mohammed, B. A. Messiha and A. A. Abo-Saif, Effect of amlodipine, lisinopril and allopurinol on acetaminophen-induced hepatotoxicity in rats, Saudi Pharm. J.24 (2016) 635–644; https://doi.org/10.1016/j.jsps.2015.04.00410.1016/j.jsps.2015.04.004509442927829805
  15. 15. M. M. Abdel-Fattah, A. A. Salama, B. A. Shehata and I. E. Ismaiel, The potential effect of the angiotensin II receptor blocker telmisartan in regulating OVA-induced airway remodeling in experimental rats, Pharmacol. Rep.67 (2015) 943–951; https://doi.org/10.1016/j.pharep.2015.02.01010.1016/j.pharep.2015.02.01026398389
  16. 16. M. G. Fahmy Wahba, B. A. Shehata Messiha and A. A. Abo-Saif, Ramipril and haloperidol as promising approaches in managing rheumatoid arthritis in rats, Eur. J. Pharmacol.765 (2015) 307–15; https://doi.org/10.1016/j.ejphar.2015.08.02610.1016/j.ejphar.2015.08.02626302059
  17. 17. F. Barutta, S. Bellini, R. Mastrocola, R. Gambino, F. Piscitelli, V. di Marzo, B. Corbetta, V. K. Vemuri, A. Makriyannis, L. Annaratone, L. Annaratone, G. Bruno and G. Gruden, Reversal of albuminuria by combined AM6545 and perindopril therapy in experimental diabetic nephropathy, Br. J. Pharmacol.175 (2018) 4371–4385; https://doi.org/10.1111/bph.1449510.1111/bph.14495624013030184259
  18. 18. X. M. Gao, A. Tsai, A. Al-Sharea, Y. Su, S. Moore, L. P. Han, H. Kiriazis, A. M. Dart, A. J. Murphy and X. J. Du, Inhibition of the renin-angiotensin system post myocardial infarction prevents inflammation-associated acute cardiac rupture, Cardiovasc. Drugs Ther.31 (2017) 145–156; https://doi.org/10.1007/s10557-017-6717-210.1007/s10557-017-6717-228204966
  19. 19. K. K. Filipski, R. H. Mathijssen, T. S. Mikkelsen, A. H. Schinkel and A. Sparreboom, Contribution of organic cation transporter 2 (OCT2) to cisplatin-induced nephrotoxicity, Clin. Pharmacol. Ther.86 (2009) 396–402; https://doi.org/10.1038/clpt.2009.13910.1038/clpt.2009.139274686619625999
  20. 20. F. A. Suliman, D. M. Khodeer, A. Ibrahiem, E. T. Mehanna, M. K. El-Kherbetawy, H. M. F. Mohammad, S. A. Zaitone and Y. M. Moustafa, Renoprotective effect of the isoflavonoid biochanin A against cisplatin induced acute kidney injury in mice: Effect on inflammatory burden and p53 apoptosis, Int. Immunopharmacol.61 (2018) 8–19; https://doi.org/10.1016/j.intimp.2018.05.01010.1016/j.intimp.2018.05.01029793166
  21. 21. A. S. Shalkami, M. I. A. Hassan and A. A. Abd El-Ghany, Perindopril regulates the inflammatory mediators, NF-kappaB/TNF-alpha/IL-6, and apoptosis in cisplatin-induced renal dysfunction, Naunyn. Schmiedebergs Arch. Pharmacol.391 (2018) 1247–1255; https://doi.org/10.1007/s00210-018-1550-010.1007/s00210-018-1550-030066022
  22. 22. I. Rubera, C. Duranton, N. Melis, M. Cougnon, B. Mograbi and M. Tauc, Role of CFTR in oxidative stress and suicidal death of renal cells during cisplatin-induced nephrotoxicity, Cell Death Dis.4 (2013) e817; https://doi.org/10.1038/cddis.2013.35510.1038/cddis.2013.355382466524091660
  23. 23. H. Soni, D. Kaminski, R. Gangaraju and A. Adebiyi, Cisplatin-induced oxidative stress stimulates renal Fas ligand shedding, Ren. Fail.40 (2018) 314–322; https://doi.org/10.1080/0886022x.2018.145693810.1080/0886022X.2018.1456938601430329619879
  24. 24. R. Goel, S. A. Bhat, K. Hanif, C. Nath and R. Shukla, Perindopril attenuates lipopolysaccharideinduced amyloidogenesis and memory impairment by suppression of oxidative stress and RAGE activation, ACS Chem. Neurosci.7 (2016) 206–217; https://doi.org/10.1021/acschemneuro.5b0027410.1021/acschemneuro.5b0027426689453
  25. 25. A. Dandekar, R. Mendez and K. Zhang, Cross talk between ER stress, oxidative stress, and inflammation in health and disease, Methods Mol. Biol.1292 (2015) 205–14; https://doi.org/10.1007/978-1-4939-2522-3_1510.1007/978-1-4939-2522-3_1525804758
  26. 26. F. Sesti, O. E. Tsitsilonis, A. Kotsinas and I. P. Trougakos, Oxidative stress-mediated biomolecular damage and inflammation in tumorigenesis, In Vivo26 (2012) 395–402.
  27. 27. K. Hasegawa, S. Wakino, K. Yoshioka, S. Tatematsu, Y. Hara, H. Minakuchi, N. Washida, H. Tokuyama, K. Hayashi and H. Itoh, Sirt1 protects against oxidative stress-induced renal tubular cell apoptosis by the bidirectional regulation of catalase expression, Biochem. Biophys. Res. Commun.372 (2008) 51–56; https://doi.org/10.1016/j.bbrc.2008.04.17610.1016/j.bbrc.2008.04.17618485895
  28. 28. M. H. Hassan, S. A. Bahashawan, T. M. Abdelghany, G. M. Abd-Allah and M. M. Ghobara, Crocin abrogates carbon tetrachloride-induced renal toxicity in rats via modulation of metabolizing enzymes and diminution of oxidative stress, apoptosis, and inflammatory cytokines, J. Biochem. Mol. Toxicol.29 (2015) 330–339; https://doi.org/10.1002/jbt.2170210.1002/jbt.2170225899501
  29. 29. J. Y. Kim, J. H. Park, K. Kim, J. Jo, J. Leem and K. K. Park, Pharmacological inhibition of caspase-1 ameliorates cisplatin-induced nephrotoxicity through suppression of apoptosis, oxidative stress, and inflammation in mice, Mediators Inflamm.2018(2018) 6571676; https://doi.org/10.1155/2018/657167610.1155/2018/6571676632343830670928
  30. 30. J. L. Martindale and N. J. Holbrook, Cellular response to oxidative stress: signaling for suicide and survival, J. Cell Physiol.192 (2002) 1–15; https://doi.org/10.1002/jcp.1011910.1002/jcp.1011912115731
  31. 31. G. Nunez, M. A. Benedict, Y. Hu and N. Inohara, Caspases: the proteases of the apoptotic pathway, Oncogene17 (1998) 3237–3245; https://doi.org/10.1038/sj.onc.120258110.1038/sj.onc.12025819916986
  32. 32. E. A. Slee, M. T. Harte, R. M. Kluck, B. B. Wolf, C. A. Casiano, D. D. Newmeyer, H. G. Wang, J. C. Reed, D. W. Nicholson, E. S. Alnemri, D. R. Green and S. J. Martin, Ordering the cytochrome c-initiated caspase cascade: hierarchical activation of caspases-2, -3, -6, -7, -8, and -10 in a caspase-9-dependent manner, J. Cell Biol.144 (1999) 281–292; https://doi.org/10.1083/jcb.144.2.28110.1083/jcb.144.2.28121328959922454
DOI: https://doi.org/10.2478/acph-2020-0033 | Journal eISSN: 1846-9558 | Journal ISSN: 1330-0075
Language: English
Page range: 515 - 525
Accepted on: Nov 18, 2019
Published on: May 13, 2020
Published by: Croatian Pharmaceutical Society
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year
Related subjects:

© 2020 Naif Aljuhani, Raed S. Ismail, Mohammed S. El-Awady, Memy H. Hassan, published by Croatian Pharmaceutical Society
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.