6. G. Daugaard, U. Abildgaard, N. H. Holstein-Rathlou, I. Bruunshuus, D. Bucher and P. P. Leyssac, Renal tubular function in patients treated with high-dose cisplatin, Clin. Pharmacol. Ther.44 (1988) 164–172; https://doi.org/10.1038/clpt.1988.13210.1038/clpt.1988.1322840230
7. A. M. Abdelrahman, Y. Al Suleimani, A. Shalaby, M. Ashique, P. Manoj, A. Nemmar and B. H. Ali, Effect of canagliflozin, a sodium glucose co-transporter 2 inhibitor, on cisplatin-induced nephrotoxicity in mice, Naunyn. Schmiedebergs Arch. Pharmacol. (2018); https://doi.org/10.1007/s00210-018-1564-710.1007/s00210-018-1564-730206656
13. E. A. M. El-Shoura, B. A. S. Messiha, S. M. Z. Sharkawi and R. A. M. Hemeida, Perindopril ameliorates lipopolysaccharide-induced brain injury through modulation of angiotensin-II/angiotensin-1-7 and related signaling pathways, Eur. J. Pharmacol.834 (2018) 305–317; https://doi.org/10.1016/j.ejphar.2018.07.04610.1016/j.ejphar.2018.07.04630059682
15. M. M. Abdel-Fattah, A. A. Salama, B. A. Shehata and I. E. Ismaiel, The potential effect of the angiotensin II receptor blocker telmisartan in regulating OVA-induced airway remodeling in experimental rats, Pharmacol. Rep.67 (2015) 943–951; https://doi.org/10.1016/j.pharep.2015.02.01010.1016/j.pharep.2015.02.01026398389
17. F. Barutta, S. Bellini, R. Mastrocola, R. Gambino, F. Piscitelli, V. di Marzo, B. Corbetta, V. K. Vemuri, A. Makriyannis, L. Annaratone, L. Annaratone, G. Bruno and G. Gruden, Reversal of albuminuria by combined AM6545 and perindopril therapy in experimental diabetic nephropathy, Br. J. Pharmacol.175 (2018) 4371–4385; https://doi.org/10.1111/bph.1449510.1111/bph.14495624013030184259
18. X. M. Gao, A. Tsai, A. Al-Sharea, Y. Su, S. Moore, L. P. Han, H. Kiriazis, A. M. Dart, A. J. Murphy and X. J. Du, Inhibition of the renin-angiotensin system post myocardial infarction prevents inflammation-associated acute cardiac rupture, Cardiovasc. Drugs Ther.31 (2017) 145–156; https://doi.org/10.1007/s10557-017-6717-210.1007/s10557-017-6717-228204966
19. K. K. Filipski, R. H. Mathijssen, T. S. Mikkelsen, A. H. Schinkel and A. Sparreboom, Contribution of organic cation transporter 2 (OCT2) to cisplatin-induced nephrotoxicity, Clin. Pharmacol. Ther.86 (2009) 396–402; https://doi.org/10.1038/clpt.2009.13910.1038/clpt.2009.139274686619625999
20. F. A. Suliman, D. M. Khodeer, A. Ibrahiem, E. T. Mehanna, M. K. El-Kherbetawy, H. M. F. Mohammad, S. A. Zaitone and Y. M. Moustafa, Renoprotective effect of the isoflavonoid biochanin A against cisplatin induced acute kidney injury in mice: Effect on inflammatory burden and p53 apoptosis, Int. Immunopharmacol.61 (2018) 8–19; https://doi.org/10.1016/j.intimp.2018.05.01010.1016/j.intimp.2018.05.01029793166
21. A. S. Shalkami, M. I. A. Hassan and A. A. Abd El-Ghany, Perindopril regulates the inflammatory mediators, NF-kappaB/TNF-alpha/IL-6, and apoptosis in cisplatin-induced renal dysfunction, Naunyn. Schmiedebergs Arch. Pharmacol.391 (2018) 1247–1255; https://doi.org/10.1007/s00210-018-1550-010.1007/s00210-018-1550-030066022
26. F. Sesti, O. E. Tsitsilonis, A. Kotsinas and I. P. Trougakos, Oxidative stress-mediated biomolecular damage and inflammation in tumorigenesis, In Vivo26 (2012) 395–402.
27. K. Hasegawa, S. Wakino, K. Yoshioka, S. Tatematsu, Y. Hara, H. Minakuchi, N. Washida, H. Tokuyama, K. Hayashi and H. Itoh, Sirt1 protects against oxidative stress-induced renal tubular cell apoptosis by the bidirectional regulation of catalase expression, Biochem. Biophys. Res. Commun.372 (2008) 51–56; https://doi.org/10.1016/j.bbrc.2008.04.17610.1016/j.bbrc.2008.04.17618485895
28. M. H. Hassan, S. A. Bahashawan, T. M. Abdelghany, G. M. Abd-Allah and M. M. Ghobara, Crocin abrogates carbon tetrachloride-induced renal toxicity in rats via modulation of metabolizing enzymes and diminution of oxidative stress, apoptosis, and inflammatory cytokines, J. Biochem. Mol. Toxicol.29 (2015) 330–339; https://doi.org/10.1002/jbt.2170210.1002/jbt.2170225899501
29. J. Y. Kim, J. H. Park, K. Kim, J. Jo, J. Leem and K. K. Park, Pharmacological inhibition of caspase-1 ameliorates cisplatin-induced nephrotoxicity through suppression of apoptosis, oxidative stress, and inflammation in mice, Mediators Inflamm.2018(2018) 6571676; https://doi.org/10.1155/2018/657167610.1155/2018/6571676632343830670928
32. E. A. Slee, M. T. Harte, R. M. Kluck, B. B. Wolf, C. A. Casiano, D. D. Newmeyer, H. G. Wang, J. C. Reed, D. W. Nicholson, E. S. Alnemri, D. R. Green and S. J. Martin, Ordering the cytochrome c-initiated caspase cascade: hierarchical activation of caspases-2, -3, -6, -7, -8, and -10 in a caspase-9-dependent manner, J. Cell Biol.144 (1999) 281–292; https://doi.org/10.1083/jcb.144.2.28110.1083/jcb.144.2.28121328959922454