2. T. L. Lemke, Antiparasitic Agents, in Foye’s Principles of Medicinal Chemistry (Eds. T. L. Lemke, D. A. Williams, V. F. Roche and S. W. Zito), 7th ed., Lippincott Williams and Wilkins, Baltimore 2013, pp.1126.
3. World Health Organization, Neglected Tropical Diseases. Prevention, Control, Elimination and Eradication, Sixty-six world health assembly A66/20, Provisional agenda item 16.2, 15 March 2013; https://www.who.int/neglected_diseases/A66_20_Eng.pdf; last access date: March 27, 2019
4. P. J. Hotez, The Neglected Tropical Diseases and the Neglected Infections of Poverty: Overview of Their Common Features, Global Disease Burden and Distribution, New Control Tools, and Prospects for Disease Elimination, in Institute of Medicine (US) Forum on Microbial Threats. The Causes and Impacts of Neglected Tropical and Zoonotic Diseases: Opportunities for Integrated Intervention Strategies, National Academies Press, Washington (DC) 2011, A7; last access date March 27, 2019
7. F. Pourrajab, S. K. Forouzannia and S. A. Tabatabaee, Novel immunomodulatory function of 1,3,4-thiadiazole derivatives with leishmanicidal activity, J. Antimicrob. Chemother.67 (2012) 1968–1978; https://doi.org/10.1093/jac/dks14410.1093/jac/dks14422581907
8. J. A. Joule, Natural Products Containing Nitrogen Heterocycles – Some Highlights 1990-2015, in Advances in Heterocyclic Chemistry: Heterocyclic Chemistry in the 21st Century – A Tribute to Alan Katritzky (Eds. E. F. V. Scriven and C. A. Ramsden), 1st ed., Academic Press, Cambridge (MA) 2016, Vol. 119, pp. 81–106.10.1016/bs.aihch.2015.10.005
9. S. B. A. M. W. Van den Broek, S. A. Meeuwissen, F. L. van Delft and F. P. J. T. Rutjes, Natural Products Containing Medium-Sized Nitrogen Heterocycles Synthesized by Ring-Closing Alkene Metathesis, in Metathesis in Natural Product Synthesis: Strategies, Substrates and Catalysts (Eds. J. Cossy, S. Arseniyadis and C. Meyer), Wiley-VCH, Weinheim 2010, pp. 45–85.10.1002/9783527629626.ch2
11. G. Serban, H. Abe and Y. Takeuchi, Synthetic studies of substituted pyridine aldehydes as intermediates for the synthesis of toddaquinoline, its derivatives and other natural products, Heterocycles83 (2011) 1989–2000; https://doi.org/10.3987/COM-11-1223910.3987/COM-11-12239
12. G. Serban, H. Abe, Y. Takeuchi and T. Harayama, A new approach to the benzopyridoxepine core by metal mediated intramolecular biaryl ether formation, Heterocycles75 (2008) 2949–2958; https://doi.org/10.3987/COM-08-1144310.3987/COM-08-11443
13. G. Serban, Y. Shigeta, H. Nishioka, H. Abe, Y. Takeuchi and T. Harayama, Studies toward the synthesis of toddaquinoline by intramolecular cyclization, Heterocycles71 (2007) 1623–1630; https://doi.org/10.3987/COM-07-1106210.3987/COM-07-11062
14. D. Sole, F. Diaba and J. Bonjoch, Nitrogen heterocycles by palladium-catalyzed cyclization of amino-tethered vinyl halides and ketone enolates, J. Org. Chem.68 (2003) 5746–5749; https://doi.org/10.1021/jo034299q10.1021/jo034299q12839475
16. P. K. Shukla, A. Verma and P. Mishra, Significance of Nitrogen Heterocyclic Nuclei in the Search of Pharmacological Active Compounds, in New Perspective in Agricultural and Human Health (Eds. R. P. Shukla, R. S. Mishra, A. D. Tripathi, A. K. Yadav, M. Tiwari and R. R. Mishra), Bharti Publication, New Delhi 2017, pp. 100–126.
17. P. Martins, J. Jesus, S. Santos, L. R. Raposo, C. Roma-Rodrigues, P. V. Baptista and A. R. Fernandes, Heterocyclic anticancer compounds: recent advances and the paradigm shift towards the use of nanomedicine’s tool box, Molecules20 (2015) 16852–16891; https://doi.org/10.3390/molecules20091685210.3390/molecules200916852633190026389876
20. Antiparasitic Drugs (Antiprotozoal Drugs, Nitazoxanide and Ivermectin); https://www.tm.mahidol.ac.th/pediatrics/?q=Antiparasitic-drugs; last access date July 12, 2019
24. M. Yoosefian, Z. J. Chermahini, H. Raissi, A. Mola and M. Sadeghi, A theoretical study on the structure of 2-amino-1,3,4-thiadiazole and its 5-substituted derivatives in the gas phase, water, THF and DMSO solutions, J. Mol. Liq.203 (2015) 137–142; https://doi.org/10.1016/j.molliq.2015.01.00210.1016/j.molliq.2015.01.002
28. M. G. Yang, T. G. M. Dhar, Z. Xiao, H. Y. Xiao, J. J. W. Duan, B. Jiang, M. A. Galella, M. Cunningham, J. Wang, S. Habte, D. Shuster, K. W. McIntyre, J. Carman, D. A. Holloway, J. E. Somerville, S. G. Nadler, L. Salter-Cid, J. C. Barrish and D. S. Weinstein, Improving the pharmacokinetic and CYP inhibition profiles of azaxanthene-based glucocorticoid receptor modulators – Identification of (S)-5-(2-(9-fluoro-2-(4-(2-hydroxypropan-2-yl)phenyl)-5H-chromeno[2,3-b]pyridin-5-yl)-2-methylpropan amido)-N-(tetrahydro-2H-pyran-4-yl)-1,3,4-thiadiazole-2-carboxamide (BMS-341), J. Med. Chem.58 (2015) 4278–4290; https://doi.org/10.1021/acs.jmedchem.5b0025710.1021/acs.jmedchem.5b00257
29. Y. J. Wu, Five-membered ring systems: with N and S atom, in Progress in Heterocyclic Chemistry (Eds. G. W. Gribble and J. A. Joule), Elsevier, Amsterdam 2017, Vol. 29, pp. 315–335.10.1016/B978-0-08-102310-5.00009-6
30. R. Sink, I. Sosic, M. Zivec, R. Fernandez-Menendez, S. Turk, S. Pajk, D. Alvarez-Gomez, E. M. Lopez-Roman, C. Gonzales-Cortez, J. Rullas-Triconado, I. Angulo-Barturen, D. Barros, L. Ballell-Pages, R. J. Young, L. Encinas and S. Gobec, Design, synthesis and evaluation of new thiadiazole based direct inhibitors of enoyl acyl carrier protein reductase (InhA) for the treatment of tuberculosis, J. Med. Chem.58 (2015) 613–624;https://doi.org/10.1021/jm501029r10.1021/jm501029r
31. F. Hipler, M. Winter and R. A. Fischer, N-H…S hydrogen bonding in 2-mercapto-5-methyl-1,3,4-thiadiazole. Synthesis and crystal structures of mercapto functionalized 1,3,4-thiadiazoles, J. Mol. Struct.658 (2003) 179–191; https://doi.org/10.1016/S0022-2860(03)00386-710.1016/S0022-2860(03)00386-7
32. Y. Hu, C. Y. Li, X. M. Wang, Y. H. Yang and H. L. Zhu, 1,3,4-Thiadiazole: synthesis, reactions and applications in medicinal, agricultural, and materials chemistry, Chem. Rev.114 (2014) 5572–5610; https://doi.org/10.1021/cr400131u10.1021/cr400131u24716666
34. G. Kornis, Five-membered Rings with More than Two Heteroatoms and Fused Carbocyclic Derivatives, in Comprehensive Heterocyclic Chemistry II (Eds. A. R. Katritzky, C. W. Rees and E. F. V. Scriven), Elsevier, Oxford 1996, Volume 4, pp. 379–408.
35. A. Senff-Ribeiro, A. Echevarria, E. F. Silva, C. R. C. Franco, S. S. Veiga and M. B. M. Oliveira, Cytotoxic effect of a new 1,3,4-thiadiazolium mesoionic compound (MI-D) on cell lines of human mellanoma, Br. J. Cancer91 (2004) 297–304; https://doi.org/10.1038/sj.bjc.660194610.1038/sj.bjc.6601946240979915199390
36. M. M. Ciotti, S. R. Humphreys, J. M. Venditti, N. O. Kaplan and A. Goldin, The antileukemic action of two thiadiazole derivatives, Cancer Res.20 (1960) 1195–1201.
37. M. Juszczak, J. Matysiak, W. Brzana, A. Niewiadomy and W. Rzeski, Evaluation of antiproliferative activity of 2-(monohalogenophenylamino)-5-(2, 4-dihydroxyphenyl)-1,3,4-thiadiazoles, Arzneim. Forsch. Drug Res.58 (2008) 353–357; https://doi.org/10.1055/s-0031-129651910.1055/s-0031-129651918751502
40. W. Rzeski, J. Matysiak and M. Kandefer-Szerszen, Anticancer, neuroprotective activities and computational studies of 2-amino-1,3,4-thiadiazole based compound, Bioorg. Med.Chem.15 (2007) 3201–3207; https://doi.org/10.1016/j.bmc.2007.02.04110.1016/j.bmc.2007.02.041
41. R. Asbury, J. A. Blessing and D. Moore, A phase II trial of aminothiadiazole in patients with mixed mesodermal tumors of the uterine corpus: a gynecologic oncology group study, Am. J. Clin. Oncol.19 (1996) 400–402.10.1097/00000421-199608000-00017
42. P. L. Elson, L. K. Kvols, S. E. Vogl, D. J. Glover, R. G. Hahn and D. L. Trump, Phase II trials of 5-day vinblastine infusion (NSC 49842), L-alanosine (NSC153353), acivicin (NSC 163501), and aminothiadiazole (NSC 4728) in patients with recurrent or metastatic renal cell carcinoma, Invest. New Drugs6 (1988) 97–103.10.1007/BF00195367
43. P. F. Engstrom, L. M. Ryan, G. Falkson and D. G. Haller, Phase II study of aminothiadiazole in advanced squamous cell carcinoma of the esophagus, Am. J. Clin. Oncol.14 (1991) 33–35.10.1097/00000421-199102000-00007
44. G. Y. Locker, L. Kilton, J. D. Khandekar, T. E. Lad, R. H. Knop, K. Albain, R. Blough, S. French and A. B. Benson, High-dose aminothiadiazole in advanced colorectal cancer. An Illinois Cancer Center phase II trial, Invest. New Drugs12 (1994) 299–301.10.1007/BF00873044
46. H. F. Oettgen, J. A. Reppert, V. Coley and J. H. Burchenal, Effects of nicotinamide and related compounds on the antileukemic activity of 2-amino-1,3,4-thiadiazole, Cancer Res. 20 (1960) 1597–1601.
47. D. M. Shapiro, M. E. Shils, R. A. Fugmann andI. M. Friedland, Quantitative biochemical differences between tumor and host as a basis for cancer chemotherapy IV. Niacin and 2-ethylamino-1,3,4-thiadiazole, Cancer Res. 17 (1957) 29–33.
49. G. Serban, 5-Arylamino-1,3,4-thiadiazol-2-yl acetic acid esters as intermediates for the synthesis of new bisheterocyclic compounds, Farmacia63 (2015) 146–149.
50. T. Horvath, G. Serban and S. Cuc, Synthesis of new 2-phenylamino-5-[(α-acylamino)-p-X-stiryl]-1,3,4-thiadiazole compounds, Farmacia62 (2014) 422–427.
51. G. Serban, A. Suciu, M. Coman and E. Curea, Synthesis and physical-chemical study of some 3-(5-arylamino-1,3,4-thiadiazol-2-yl)coumarins, Farmacia50 (2002) 50–54.
53. G. Serban, D. Matinca, O. Bradea, L. Gherman, M. Coman and E. Curea, The study of the biological activity of some heterocyclic coumarins, Farmacia53 (2005) 91–99.
55. World Health Organization, Integrating Neglected Tropical Diseases Into Global Health and Development: Fourth WHO Report on Neglected Tropical Diseases, WHO, Geneva, 19 April 2017, licence: CC BY-NC-SA 3.0 IGO; https://apps.who.int/iris/bitstream/handle/10665/255011/9789241565448-eng.pdf;jsessionid=9AA10810B00430B8A67751281F4AEFDD?sequence=1; last access date March 27, 2019
56. World Health Organization, WHO Dept. of Control of Neglected Tropical Diseases, Working to Overcome the Global Impact of Neglected Tropical Diseases: First WHO Report on Neglected Tropical Diseases, WHO Press, Geneva 2010; https://apps.who.int/iris/bitstream/handle/10665/44440/9789241564090_eng.pdf;jsessionid=FADC468AEF33A190CEC5CAB713DAAB9F?sequence=1; last access date September 25, 2017
58. P. Linciano, A. Dawson, I. Poohner, D. M. Costa, M. S. Sa, A. Cordeiro-da-Silva, R. Luciani, S. Gul, G. Witt, B. Ellinger, M. Kuzikov, P. Gribbon, J. Reinshagen, M. Wolf, B. Behrens, V. Hannaert, P. A. M. Michels, E. Nerini, C. Pozzi, F. di Pisa, G. Landi, N. Santarem, S. Ferrari, P. Saxena, S. Lazzari, G. Cannazza, L. H. Freitas-Junior, C. B. Moraes, B. S. Pascoalino, L. M. Alcantara, C. P. Bertolacini, V. Fontana, U. Wittig, W. Muller, R. C. Wade, W. N. Hunter, S. Mangani, L. Costantino and M. P. Costi, Exploiting the 2-amino-1,3,4-thiadiazole scaffold to inhibit Trypanosoma brucei pteridine reductase in support of early-stage drug discovery, ACS Omega2 (2017) 5666−5683; https://doi.org/10.1021/acsomega.7b0047310.1021/acsomega.7b00473562394928983525
62. World Health Organization, Chagas Disease in the Americas: A Review of the Current Public Health Situation and a Vision for the Future. Report: Conclusions and Recommendations, Washington, D.C., 3-4 May 2018; https://www.paho.org/hq/index.php?option=com_content&view=article&id=14399:enfermedad-chagas-en-americas-revision-de-situacion-vision-futuro&Itemid=72315&lang=en; last access date July 17, 2018
64. A. K. Jain, S. Sharma, A. Vaidya, V. Ravichandran and R. K. Agrawal, 1,3,4-Thiadiazole and its derivatives: a review on recent progress in biological activities, Chem. Biol. Drug Des.81 (2013) 557–576; https://doi.org/10.1111/cbdd.1212510.1111/cbdd.12125
66. A. S. Nagle, S. Khare, A. B. Kumar, F. Supek, A. Buchynskyy, C. J. N. Mathison, N. K. Chennamaneni, N. Pendem, F. S. Buckner, M. H. Gelb and V. Molteni, Recent developments in drug discovery for leishmaniasis and human African trypanosomiasis, Chem. Rev.114 (2014) 11305–11347; https://doi.org/10.1021/cr500365f10.1021/cr500365f
67. Centers for Disease Control and Prevention, Parasites, African trypanosomiasis; https://www.cdc.gov/parasites/sleepingsickness/biology.html; last access date May 9, 2019
68. Parasites in humans, Trypanosoma brucei – sleeping sickness; http://www.parasitesinhumans.org/trypanosoma-brucei-sleeping-sickness.html; last access date May 9, 2019
69. World Health Organization, Human African Trypanosomiasis, Symptoms, Diagnosis and Treatment; http://www.who.int/trypanosomiasis_african/disease/diagnosis/en/; last access date November 1st, 2018
71. World Health Organization, Chagas Disease (American Trypanosomiasis), 1 February 2018; http://www.who.int/news-room/fact-sheets/detail/chagas-disease-(american-trypanosomiasis); last access date July 24, 2018
72. World Health Organization, Chagas Disease: Control and Elimination, Sixty-third World Health Assembly, 22 April 2010; http://apps.who.int/gb/ebwha/pdf_files/WHA63/A63_17-en.pdf; last access date November 1, 2018
73. S. Pund and A. Joshi, Nanoarchitectures for Neglected Tropical Diseases: Challenges and State of the Art, in Nano- and Microscale Drug Delivery Systems: Design and Fabrication (Ed. A. M. Grumezescu), 1st ed., Elsevier, Amsterdam 2017, pp. 449.10.1016/B978-0-323-52727-9.00023-6
74. J. D. Maya, S. Bollo, L. J. Nunez-Vergara, J. A. Squella, Y. Repetto, A. Morello, J. Perie and G. Chauviere, Trypanosoma cruzi: effect and mode of action of nitroimidazole and nitrofuran derivatives, Biochem. Pharmacol.65 (2003) 999–1006; https://doi.org/10.1016/S0006-2952(02)01663-510.1016/S0006-2952(02)01663-5
75. A. Silva de Carvalho, K. Salomao, S. Lisboa de Castro, T. R. Conde, H. P. da Silva Zamith, E. R. Caffarena, B. S. Hall, S. R. Wilkinson and N. Boechat, Megazol and its bioisostere 4H-1,2,4-triazole: comparing the trypanocidal, cytotoxic and genotoxic activities and their in vitro and in silico interactions with the Trypanosoma brucei nitroreductase enzyme, Mem. Inst. Oswaldo Cruz109 (2014) 315–323; https://doi.org/10.1590/0074-027614049710.1590/0074-0276140497
76. B. Bouteille, A. Marie-Daragon, G. Chauviere, C. de Albuquerque, B. Enanga, M. L. Darde, J. M. Vallat, J. Perie and M. Dumas, Effect of megazol on Trypanosoma brucei brucei acute and subacute infections in Swiss mice, Acta Tropica60 (1995) 73–80; https://doi.org/10.1016/0001-706X(95)00109-R10.1016/0001-706X(95)00109-R
77. G. Chauviere, B. Bouteille, B. Enanga, C. de Albuquerque, S. L. Croft, M. Dumas and J. Perie, Synthesis and biological activity of nitro heterocycles analogous to megazol, a trypanocidal lead, J. Med. Chem.46 (2003) 427–440; https://doi.org/10.1021/jm021030a10.1021/jm021030a12540242
80. H. B. Leites, F. S. Damasceno, A. M. Silber, R. Z. Mendonca and C. N. Albuquerque, Synthesis and evaluation of trypanosomicidal activity of new derivatives of megazol, Pharm. Biol. Eval.5 (2018) 40–51.10.26510/2394-0859.pbe.2018.05
84. S. Ferrari, F. Morandi, D. Motiejunas, E. Nerini, S. Henrich, R. Luciani, A. Venturelli, S. Lazzari, S. Calo, S. Gupta, V. Hannaert, P. A. M. Michels, R. C. Wade and M. P. Costi, Virtual screening identification of nonfolate compounds, including a CNS drug, as antiparasitic agents inhibiting pteridine reductase, J. Med. Chem.54 (2011) 211–221; https://doi.org/10.1021/jm101057210.1021/jm101057221126022
86. D. Spinks, H. B. Ong, C. P. Mpamhanga, E. J. Shanks, D. A. Robinson, I. T. Collie, K. D. Read, J. A. Frearson, P. G. Wyatt, R. Brenk, A. H. Fairlamb and I. H. Gilbert, Design, synthesis and biological evaluation of novel inhibitors of Trypanosoma brucei pteridine reductase 1, Chem. Med. Chem.6 (2011) 302–308; https://doi.org/10.1002/cmdc.20100045010.1002/cmdc.201000450304771021275054
87. B. Nare, J. Luba, L. W. Hardy and S. Beverley, New approaches to Leishmania chemotherapy: pteridine reductase 1 (PTR1) as a target and modulator of antifolate sensitivity, Parasitology114 (1997) S101–S110.10.1017/S0031182097001133
88. A. Cavazzuti, G. Paglietti, W. N. Hunter, F. Gamarro, S. Piras, M. Loriga, S. Allecca, P. Corona, K. McLuskey, L. Tulloch, F. Gibellini, S. Ferrari and M. P. Costi, Discovery of potent pteridine reductase inhibitors to guide antiparasite drug development, Proc. Natl. Acad. Sci. USA105 (2008) 1448–1453; https://doi.org/10.1073/pnas.070438410510.1073/pnas.0704384105223416418245389
89. R. F. Rodrigues, D. Castro-Pinto, A. Echevarria, C. M. dos Reis, C. N. Del Cistia, C. M. R. Sant’Anna, F. Teixeira, H. Castro, M. Canto-Cavalheiro, L. L. Leon and A. Tomas, Investigation of trypanothione reductase inhibitory activity by 1,3,4-thiadiazolium-2-aminide derivatives and molecular docking studies, Bioorg. Med. Chem.20 (2012) 1760–1766; https://doi.org/10.1016/j.bmc.2012.01.00910.1016/j.bmc.2012.01.00922304847
90. G. Colotti, P. Baiocco, A. Fiorillo, A. Boffi, E. Poser, F. Di Chiaro and A. Ilari, Structural insights into the enzymes of the trypanothione pathway: Targets for antileishmaniasis drugs, Future Med. Chem. 5 (2013) 1861–1875; https://doi.org/10.4155/fmc.13.14610.4155/fmc.13.14624144416
92. D. Benítez, A. Medeiros, L. Fiestas, E. A. Panozzo-Zenere, F. Maiwald, K. C. Prousis, M. Roussaki, T. Calogeropoulou, A. Detsi, T. Jaeger, J. Šarlauskas, L. P. Mašič, C. Kunick, G. R. Labadie, L. Flohé and M. A. Comini, Identification of novel chemical scaffolds inhibiting trypanothione synthetase from pathogenic trypanosomatids, PLoS Negl. Trop. Dis.10 (2016) e0004617 (25 pages); https://doi.org/10.1371/journal.pntd.000461710.1371/journal.pntd.0004617482923327070550
93. A. Ilari, A. Fiorillo, I. Genovese and G. Colotti, An update on structural insights into the enzymes of the polyamine-trypanothione pathway: targets for new drugs against leishmaniasis, Future Med. Chem.9 (2017) 61–77; https://doi.org/10.4155/fmc-2016-018010.4155/fmc-2016-018027957878
94. V. Olin-Sandoval, Z. Gonzalez-Chavez, M. Berzunza-Cruz, I. Martinez, R. Jasso-Chavez, I. Becker, B. Espinoza, R. Moreno-Sanchez and E. Saavedra, Drug target validation of the trypanothione pathway enzymes through metabolic modeling, FEBS J.279 (2012) 1811–1833; https://doi.org/10.1111/j.1742-4658.2012.08557.x10.1111/j.1742-4658.2012.08557.x22394478
95. R. F. Rodrigues, E. F. da Silva, A. Echevarria, R. Fajardo-Bonin, V. F. Amaral, L. L. Leon and M. Canto-Cavalheiro, A comparative study of mesoionic compounds in Leishmania sp. and toxicity evaluation, Eur. J. Med. Chem. 42 (2007) 1039–1043; https://doi.org/10.1016/j.ejmech.2006.12.02610.1016/j.ejmech.2006.12.02617367894
96. R. F. Rodrigues, K. S. Charret, E. F. da Silva, A. Echevarria, V. F. Amaral, L. L. Leon and M. Canto-Cavalheiro, Antileishmanial activity of 1,3,4-thiadiazolium-2-aminide in mice infected with Leishmania amazonensis, Antimicrob. Agents Chemother. 53 (2009) 839–842; https://doi.org/10.1128/AAC.00062-0810.1128/AAC.00062-08263063319015338
97. D. Spinks, L. S. Torrie, S. Thompson, J. R. Harrison, J. A. Frearson, K. D. Read, A. H. Fairlamb, P. G. Wyatt and I. H. Gilbert, Design, synthesis and biological evaluation of Trypanosoma brucei trypanothione synthetase inhibitors, Chem. Med. Chem.7 (2012) 95–106; https://doi.org/10.1002/cmdc.20110042010.1002/cmdc.201100420332066322162199
98. A. F. Sousa, A. G. Gomes-Alves, D. Benitez, M. A. Comini, L. Flohe, T. Jaeger, J. Passos, F. Stuhlmann, A. M. Tomas and H. Castro, Genetic and chemical analyses reveal that trypanothione synthetase but not glutathionylspermidine synthetase is essential for Leishmania infantu, Free Radic. Biol. Med.73 (2014) 229–238; https://doi.org/10.1016/j.freeradbiomed.2014.05.00710.1016/j.freeradbiomed.2014.05.00724853758
99. P. K. Fyfe, S. L. Oza, A. H. Fairlamb and W. N. Hunter, Leishmania trypanothione synthetaseamidase structure reveals a basis for regulation of conflicting synthetic and hydrolytic activities, J. Biol. Chem.283 (2008) 17672–17680; https://doi.org/10.1074/jbc.M80185020010.1074/jbc.M801850200242736718420578
100. W. da Silva Ferreira, L. Freire-de-Lima, V. Barbosa Saraiva, F. Alisson-Silva, L. Mendonca-Previato, J. O. Previato, A. Echevarria and M. E. Freire de Lima, Novel 1,3,4-thiadiazolium-2-phenylamine chlorides derived from natural piperine as trypanocidal agents: chemical and biological studies, Bioorg. Med. Chem.16 (2008) 2984–2991; https://doi.org/10.1016/j.bmc.2007.12.04910.1016/j.bmc.2007.12.04918226906
101. A. Tahghighi and F. Babalouei, Thiadiazoles: the appropriate pharmacological scaffolds with leishmanicidal and antimalarial activities: a review, Iran. J. Basic Med. Sci.20 (2017) 613–622; https://doi.org/10.22038/IJBMS.2017.8828
102. World Health Organization, World Malaria Report 2018, World Health Organization, Geneva 2018, Licence: CC BY-NC-SA 3.0 IGO, ISBN 978-92-4-156565-3; https://apps.who.int/iris/bitstream/handle/10665/275867/9789241565653-eng.pdf; last access date November 29, 2018
103. World Health Organization, Malaria Vaccine: WHO Position Paper – January 2016, Weekly Epidemiological Record91 (2016) 33–52; https://www.who.int/wer; last access date June 8, 2019
104. World Health Organization, Malaria, 19 November 2018; http://www.who.int/en/news-room/fact-sheets/detail/malaria; last access date November 29, 2018
105. World Health Organization, First Malaria Vaccine in Africa: A Potential New Tool for Child Health and Improved Malaria Control, WHO/CDS/GMP/2018.05; https://www.who.int/malaria/publications/atoz/first-malaria-vaccine/en/; last access date June 8, 2019
106. World Health Organization, Short Overview of the Malaria Vaccine Implementation Programme, April 2019; https://www.who.int/malaria/media/malaria-vaccine-overview/en/; last access date June 8, 2019
107. L. Foquet, C. Hermsen, G. J. van Gemert, E. Van Braeckel, K. Weening, R. Sauerwein, P. Meuleman and G. Leroux-Roels, Vaccine-induced monoclonal antibodies targeting circumsporozoite protein prevent Plasmodium falciparum infection, J. Clin. Invest.124 (2014) 140–144; https://doi.org/10.1172/JCI7034910.1172/JCI70349387123824292709
108. World Health Organization, Malaria Vaccine Implementation Programme (MVIP); https://www.who.int/immunization/diseases/malaria/malaria_vaccine_implementation_programme/about/en/; last access date June 8, 2019
109. World Health Organization, Malaria Vaccine Pilot Launched in Malawi. Country First of Three in Africa to Roll Out Landmark Vaccine, Geneva 23 April 2019; https://www.who.int/news-room/detail/23-04-2019-malaria-vaccine-pilot-launched-in-malawi; last access dateJune 8, 2019
111. P. B. Bloland and H. A. Williams, Malaria Control During Mass Population Movements and Natural Disasters, National Academies Press, Washington (DC) 2002, pp. 145–150.
112. V. M. Avery, S. Bashyam, J. N. Burrows, S. Duffy, G. Papadatos, S. Puthukkuti, Y. Sambandan, S. Singh, T. Spangenberg, D. Waterson and P. Willis, Screening and hit evaluation of a chemical library against blood-stage Plasmodium falciparum, Malar. J.13 (2014) Article ID 190 (12 pages); https://doi.org/10.1186/1475-2875-13-19010.1186/1475-2875-13-190409491924886460
114. P. R. Torgerson and P. Mastroiacovo, The global burden of congenital toxoplasmosis: a systematic review, Bull. World Health Organ.91 (2013) 501–508.10.2471/BLT.12.111732369979223825877
116. World Health Organization, Toxoplasmosis: Greater Awareness Needed; http://www.euro.who.int/en/health-topics/disease-prevention/food-safety/news/news/2016/11/toxoplasmosis-greater-awareness-needed; last access date November 23, 2018
119. R. P. Tenorio, C. S. Carvalho, C. S. Pessanha, J. G. de Lima, A. R. de Faria, A. J. Alves, E. J. T. de Melo and A. J. S. Goes, Synthesis of thiosemicarbazone and 4-thiazolidinone derivatives and their in vitro anti-Toxoplasma gondii activity, Bioorg. Med. Chem. Lett.15 (2005) 2575–2578; https://doi.org/10.1016/j.bmcl.2005.03.04810.1016/j.bmcl.2005.03.04815863319
120. T. M. de Aquino, A. P. Liesen, R. E. A. da Silva, V. T. Lima, C. S. Carvalho, A. R. de Faria, J. M. de Araujo, J. G. de Lima, A. J. Alves, E. J. T. de Melo and A. J. S. Goes, Synthesis, anti-Toxoplasma gondii and antimicrobial activities of benzaldehyde 4-phenyl-3-thiosemicarbazones and 2-[(phenylmethylene)hydrazono]-4-oxo-3-phenyl-5-thiazolidineacetic acids, Bioorg. Med. Chem.16 (2008) 446–456; https://doi.org/10.1016/j.bmc.2007.09.02510.1016/j.bmc.2007.09.02517905587
121. A. P. Liesen, T. M. de Aquino, C. S. Carvalho, V. T. Lima, J. M. de Araujo, J. G. de Lima, A. R. de Faria, E. J. T. de Melo, A. J. Alves, E. W. Alves, A. Q. Alves and A. J. S. Goes, Synthesis and evaluation of anti-Toxoplasma gondii and antimicrobial activities of thiosemicarbazides, 4-thiazolidinones and 1,3,4-thiadiazoles, Eur. J. Med. Chem.45 (2010) 3685–3691; https://doi.org/10.1016/j.ejmech.2010.05.01710.1016/j.ejmech.2010.05.01720541294