Have a personal or library account? Click to login
Synthesis, in vitro safety and antioxidant activity of new pyrrole hydrazones Cover

Synthesis, in vitro safety and antioxidant activity of new pyrrole hydrazones

Open Access
|Feb 2020

References

  1. 1. G. Lavanya, V. Padmavathi and A. Padmaja, Synthesis and antioxidant activity of 1,4-[bis(3-arylmethanesulfonyl pyrrolyl and pyrazolyl)]benzenes, J. Braz. Chem. Soc. 25 (2014) 1200–1207; https://doi.org/10.5935/0103-5053.20140097">https://doi.org/10.5935/0103-5053.2014009710.5935/0103-5053.20140097
  2. 2. S. Durgamma, A. Muralikrishna, V. Padmavathi and A. Padmaja, Synthesis and antioxidant activity of amido-linked benzoxazolyl/benzothiazolyl/benzimidazolyl-pyrroles and pyrazoles, Med. Chem. Res.23 (2014) 2916–2929; https://doi.org/10.1007/s00044-013-0884-x">https://doi.org/10.1007/s00044-013-0884-x10.1007/s00044-013-0884-x
  3. 3. S. K. Sridhar, M. Saravanan and A. Ramesh, Synthesis and antibacterial screening of hydrazones, Schiff and Mannich bases of isatin derivatives, Eur. J. Med. Chem.36 (2001) 615–625; https://doi.org/10.1016/S0223-5234(01)01255-7">https://doi.org/10.1016/S0223-5234(01)01255-710.1016/S0223-5234(01)01255-7
  4. 4. S. I. Alqasoumi, M. M. Ghorab, Z. H. Ismail, S. M. Abdel-Gawad, M. S. El-Gaby and H. M. Aly, Novel antitumor acetamide, pyrrole, pyrrolopyrimidine, thiocyanate, hydrazone, pyrazole, isothiocyanate and thiophene derivatives containing a biologically active pyrazole moiety, Arzneimittelforschung59 (2009) 666–671; https://doi.org/10.1055/s-0031-1296457">https://doi.org/10.1055/s-0031-129645710.1055/s-0031-129645720108654
  5. 5. Y. Xia, C. Fan, B. X. Zhao, J. Zhao, D. S. Shin and J. Y. Miao, Synthesis and structure-activity relationships of novel 1-arylmethyl-3-aryl-1H-pyrazole-5-carbohydrazide hydrazone derivatives as potential agents against A549 lung cancer cells, Eur. J. Med. Chem.43 (2008) 2347–2353; https://doi.org/10.1016/j.ejmech.2008.01.021">https://doi.org/10.1016/j.ejmech.2008.01.02110.1016/j.ejmech.2008.01.02118313806
  6. 6. R. M. Mohareb, H. D. Fleita and O. K. Sakka, Novel synthesis of hydrazide-hydrazone derivatives and their utilization in the synthesis of coumarin, pyridine, thiazole and thiophene derivatives with antitumor activity, Molecules16 (2010) 16–27; https://doi.org/10.3390/molecules16010016">https://doi.org/10.3390/molecules1601001610.3390/molecules16010016625941921187814
  7. 7. A. A. El-Tombary and S. A. M. El-Hawash, Synthesis, antioxidant, anticancer and antiviral activities of novel quinoxalinehydrazone derivatives and their acyclic C-nucleosides, Med. Chem. 10 (2014) 521–532; https://doi.org/10.2174/15734064113096660069">https://doi.org/10.2174/1573406411309666006910.2174/1573406411309666006924151878
  8. 8. M. O. Puskullu, H. Shirinzadeh, M. Nenni, H. Gurer-Orhan and S. Suzen, Synthesis and evaluation of antioxidant activity of new quinoline-2-carbaldehyde hydrazone derivatives: bioisosteric melatonin analogues, J. Enzyme Inhib. Med. Chem.31 (2016) 121–125; https://doi.org/10.3109/14756366.2015.1005012">https://doi.org/10.3109/14756366.2015.100501210.3109/14756366.2015.100501225942363
  9. 9. H. S. Kareem, A. Ariffin, N. Nordin, T. Heidelberg, A. Abdul-Aziz, K. W. Kong and W. Yehye, Correlation of antioxidant activities with theoretical studies for new hydrazone compounds bearing a 3,4,5-trimethoxy benzyl moiety, Eur. J. Med. Chem.103 (2015) 497–505; https://doi.org/10.1016/j.ejmech.2015.09.016">https://doi.org/10.1016/j.ejmech.2015.09.01610.1016/j.ejmech.2015.09.01626402727
  10. 10. M. Georgieva, D. Tzankova, S. Vladimirova and A. Bijev, Evaluation of a group of pyrrole derivatives as tuberculostatic agents, CBU Int. Conf. Innov. Sci. Ed.5 (2017) 1083–1091; https://doi.org/10.12955/cbup.v5.1075">https://doi.org/10.12955/cbup.v5.107510.12955/cbup.v5.1075
  11. 11. A. Bijev and M. Georgieva, Pyrrole-based hydrazones synthesized and evaluated in vitro as potential tuberculostatics, Lett. Drug Des. Discov.7 (2010) 430–437; https://doi.org/10.2174/157018009789108268">https://doi.org/10.2174/15701800978910826810.2174/157018009789108268
  12. 12. A. Kajal, S. Bala, N. Sharma, S. Kamboj and V. Saini, Therapeutic potential of hydrazones as anti-inflammatory agents, Int. J. Med. Chem.11 (2014) 1–11; https://doi.org/10.1155/2014/761030">https://doi.org/10.1155/2014/76103010.1155/2014/761030
  13. 13. K. N. de Oliveira, P. Costa, J. R. Santin, L. Mazzambani, C. Bürger, C. Mora, R. J. Nunes and M. M. de Souza, Synthesis and antidepressant-like activity evaluation of sulphonamides and sulphonylhydrazones, Bioorg. Med. Chem.19 (2011) 4295–4306; https://doi.org/10.1016/j.bmc.2011.05.056">https://doi.org/10.1016/j.bmc.2011.05.05610.1016/j.bmc.2011.05.056
  14. 14. C. M. Leal, S. L. Pereira, A. E. Kummerle, D. M. Leal, R. Tesch, C. M. de Sant’Anna, C. A. Fraga, E. J. Barreiro, R. T. Sudo and G. Zapata-Sudo, Antihypertensive profile of 2-thienyl-3,4-methylene dioxy benzoylhydrazone is mediated by activation of the A2A adenosine receptor, Eur. J. Med. Chem.55 (2012) 49–57; https://doi.org/10.1016/j.ejmech.2012.06.056">https://doi.org/10.1016/j.ejmech.2012.06.05610.1016/j.ejmech.2012.06.056
  15. 15. L. Yurttaş, Y. Özkay, Z. A. Kaplancıklı, Y. Tunalı and H. Karaca, Synthesis and antimicrobial activity of some new hydrazone-bridged thiazole-pyrrole derivatives, J. Enzyme Inhib. Med. Chem.28 (2013) 830–835; https://doi.org/10.3109/14756366.2012.688043">https://doi.org/10.3109/14756366.2012.68804310.3109/14756366.2012.688043
  16. 16. O. O. Ajani, C. A. Obafemi, O. C. Nwinyi and D. A. Akinpelu, Microwave assisted synthesis and antimicrobial activity of 2-quinoxalinone-3-hydrazone derivatives, Bioorg. Med. Chem.18 (2010) 214–221; https://doi.org/10.1016/j.bmc.2009.10.064">https://doi.org/10.1016/j.bmc.2009.10.06410.1016/j.bmc.2009.10.064
  17. 17. R. J. Vaigunda, D. Sriram, S. K. Patel, I. V. Reddy, N. Bharathwajan, J. Stables and P. Yogeeswari, Design and synthesis of anticonvulsants from a combined phthalimide-GABA-anilide and hydra-zone pharmacophore, Eur. J. Med. Chem.42 (2007) 146–151; https://doi.org/10.1016/j.ejmech.2006.08.010">https://doi.org/10.1016/j.ejmech.2006.08.01010.1016/j.ejmech.2006.08.010
  18. 18. J. R. Dimmock, S. C. Vashishtha and J. P. Stables, Anticonvulsant properties of various acetylhydra-zones, oxamoylhydrazones and semicarbazones derived from aromatic and unsaturated carbonyl compounds, Eur. J. Med. Chem.35 (2000) 241–248; https://doi.org/10.1016/S0223-5234(00)00123-9">https://doi.org/10.1016/S0223-5234(00)00123-910.1016/S0223-5234(00)00123-9
  19. 19. B. G. Giménez, M. S. Santos, M. Ferrarini and J. P. S. Fernandes, Evaluation of blockbuster drugs under the Rule-of-five, Pharmazie65 (2010) 148–152; https://doi.org/10.1691/ph.2010.9733">https://doi.org/10.1691/ph.2010.9733
  20. 20. C. A. Lipinski, Lead- and drug-like compounds: the rule-of-five revolution, Drug Discov. Today Technol.1 (2004) 337–341; https://doi.org/10.1016/j.ddtec.2004.11.007">https://doi.org/10.1016/j.ddtec.2004.11.00710.1016/j.ddtec.2004.11.00724981612
  21. 21. T. P. Kenakin, Pharmacology in Drug Discovery and Development, 2nd ed., Elsevier, Amsterdam 2017, pp. 157–191.10.1016/B978-0-12-803752-2.00007-7
  22. 22. J. F. Varghese, R. Patel and U. C. S. Yadav, Novel insights in the metabolic syndrome-induced oxidative stress and inflammation-mediated atherosclerosis, Curr. Cardiol. Rev.14 (2018) 4–14; https://doi.org/10.2174/1573403X13666171009112250">https://doi.org/10.2174/1573403X1366617100911225010.2174/1573403X13666171009112250587226028990536
  23. 23. H. Yaribeygi, Y. Panahi, B. Javadi and A. Sahebkar, The underlying role of oxidative stress in neurodegeneration: A mechanistic review, CNS Neurol. Dis.-Drug Targets17 (2018) 207–215; https://doi.org/10.2174/1871527317666180425122557">https://doi.org/10.2174/187152731766618042512255710.2174/187152731766618042512255729692267
  24. 24. L. A. Pham-Huy, H. He and C. Pham-Huy, Free radicals, antioxidants in disease and health, Int. J. Biomed. Sci.4 (2008) 89–96.10.59566/IJBS.2008.4089
  25. 25. M. Chand, Rajeshwari, A. Hiremathad, M. Singh, M. A. Santos and R. S. Keri, A review on antioxidant potential of bioactive heterocycle benzofuran: Natural and synthetic derivatives, Pharmacol. Rep.69 (2017) 281–295; https://doi.org/10.1016/j.pharep.2016.11.007">https://doi.org/10.1016/j.pharep.2016.11.00710.1016/j.pharep.2016.11.00728171830
  26. 26. M. Miceli, E. Roma, P. Rosa, M. Feroci, M. A. Loreto, D. Tofani and T. Gasperi, Synthesis of benzofuran-2-one derivatives and evaluation of their antioxidant capacity by comparing DPPH assay and cyclic voltammetry, Molecules23 (2018) 710–726; https://doi.org/10.3390/molecules23040710">https://doi.org/10.3390/molecules2304071010.3390/molecules23040710601762029561784
  27. 27. A. A. Shanty, J. E. Philip, E. J. Sneha, M. R. P. Kurup, S. Balachandran and P. V. Mohanan, Synthesis, characterization and biological studies of Schiff bases derived from heterocyclic moiety, Bioorg. Chem.70 (2017) 67–73; https://doi.org/10.1016/j.bioorg.2016.11.009">https://doi.org/10.1016/j.bioorg.2016.11.00910.1016/j.bioorg.2016.11.00927894775
  28. 28. A. A. Shanty and P. V. Mohanan, Heterocyclic Schiff bases as non toxic antioxidants: Solvent effect, structure activity relationship and mechanism of action, Spectrochim. Acta A192 (2018) 181–187; https://doi.org/10.1016/j.saa.2017.11.019">https://doi.org/10.1016/j.saa.2017.11.01910.1016/j.saa.2017.11.01929136583
  29. 29. K. M. Khan, Z. Shah, V. U. Ahmad, M. Khan, M. Taha, F. Rahim, S. Ali, N. Ambreen, S. Perveen, M. I. Choudhary and W. Voelter, 2,4,6-Trichlorophenylhydrazine Schiff bases as DPPH radical and super oxide anion scavengers, Med. Chem.8 (2012) 452–461; https://doi.org/10.2174/1573406411208030452">https://doi.org/10.2174/157340641120803045210.2174/157340641120803045222530900
  30. 30. N. Belkheiri, B. Bouguerne, F. Bedos-Belval, H. Duran, C. Bernis, R. Salvayre, A. Nègre-Salvayre and M. Baltas, Synthesis and antioxidant activity evaluation of a syringic hydrazones family, Eur. J. Med. Chem.45 (2010) 3019–3026; https://doi.org/10.1016/j.ejmech.2010.03.031">https://doi.org/10.1016/j.ejmech.2010.03.03110.1016/j.ejmech.2010.03.03120403645
  31. 31. A. Guillouzo, Liver cell models in in vitro toxicology, Environ. Health Perspect.106 (Suppl. 2) (1998) 511–532; https://doi.org/10.1289/ehp.98106511">https://doi.org/10.1289/ehp.9810651110.1289/ehp.9810651115333859599700
  32. 32. P. Ertl, B. Rohde and P. Selzer, Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties, J. Med. Chem.43 (2000) 3714–3717; https://doi.org/10.1021/jm000942e">https://doi.org/10.1021/jm000942e10.1021/jm000942e11020286
  33. 33. D. F. Veber, S. R. Johnson, H. Y. Cheng, B. R. Smith, K. W. Ward and K. D. Kopple, Molecular properties that influence the oral bioavailability of drug candidates, J. Med. Chem.45 (2002) 2615–2623; https://doi.org/10.1021/jm020017n">https://doi.org/10.1021/jm020017n10.1021/jm020017n
  34. 34. А. Bijev, Synthesis and preliminary screening of carbohydrazides and hydrazones of pyrrole derivatives as potential tuberculostatics, Arzneimittelforschung56 (2006) 96–103; https://doi.org/10.1055/s-0031-1296708">https://doi.org/10.1055/s-0031-129670810.1055/s-0031-1296708
  35. 35. B. C. Evans, C. E. Nelson, S. S. Yu, K. R. Beavers, A. J. Kim, H. Li, H. M. Nelson, T. D. Giorgio and C. L. Duvall, Ex vivo red blood cell hemolysis assay for the evaluation of pH-responsive endosomolytic agents for cytosolic delivery of biomacromolecular drugs, J. Vis. Exp.73 (2013) e50166; https://doi.org/10.3791/50166">https://doi.org/10.3791/5016610.3791/50166
  36. 36. W. Brand-Williams, M. E. Cuvelier and C. Berset, Use of a free radical method to evaluate antioxidant activity, LWT-Food Sci. Technol.28 (1995) 25–30; https://doi.org/10.1016/S0023-6438(95)80008-5">https://doi.org/10.1016/S0023-6438(95)80008-510.1016/S0023-6438(95)80008-5
  37. 37. R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang and C. Rice-Evans, Antioxidant activity applying an improved ABTS radical cation decolorization assay, Free Radic. Biol. Med.26 (1999) 1231–1237; https://doi.org/10.1016/S0891-5849(98)00315-3">https://doi.org/10.1016/S0891-5849(98)00315-310.1016/S0891-5849(98)00315-3
  38. 38. O. H. Lowry, N. J. Rosebrough, A. L. Farr and R. J. Randall, Protein measurement with the Folin phenol reagent, J. Biol. Chem. 193 (1951) 265–275.10.1016/S0021-9258(19)52451-6
  39. 39. D. Mansuy, A. Sassi, P. M. Dansette and M. Plat, A new potent inhibitor of lipid peroxidation in vitro and in vivo, the hepatoprotective drug anisyldithiolthione, Biochem. Biophys. Res. Commun. 135 (1986) 1015–1021; https://doi.org/10.1016/0006-291X(86)91029-6">https://doi.org/10.1016/0006-291X(86)91029-610.1016/0006-291X(86)91029-6
  40. 40. C. Deby and R. Goutier, New perspectives on the biochemistry of superoxide anion and the efficiency of superoxide dismutases, Biochem. Pharmacol. 39 (1990) 399–405; https://doi.org/10.1016/0006-2952(90)90043-K">https://doi.org/10.1016/0006-2952(90)90043-K10.1016/0006-2952(90)90043-K
  41. 41. H. Gao and X. Gao, Recent Progress in Blood-brain Barrier Transportation Research, in Brain Targeted Drug Delivery SystemA Focus on Nanotechnology and Nanoparticulates, 1sted. Elsevier, Amsterdam 2019, pp. 469–481.
  42. 42. Y. H. Zhao, M. H. Abraham, J. Lee, A. Hersey, C. N. Luscombe, G. Beck, B. Sherborne and I. Cooper, Rate-limited steps of human oral absorption and QSAR studies, Pharm. Res.19 (2002) 1446–1457.10.1023/A:1020444330011
  43. 43. D. Schuster, C. Laggner and T. Langer, Why drugs fail – a study on side effects in new chemical entities, Curr. Pharm. Des. 11 (2005) 3545–3559; https://doi.org/10.2174/138161205774414510">https://doi.org/10.2174/13816120577441451010.2174/13816120577441451016248807
  44. 44. W. C. Maddrey, Drug-induced hepatotoxicity, J. Clin. Gastroenterol. 39 (2005) S83–S89; https://doi.org/10.1097/01.mcg.0000155548.91524.6e">https://doi.org/10.1097/01.mcg.0000155548.91524.6e10.1097/01.mcg.0000155548.91524.6e
  45. 45. J. Hou, W. Zhao, Z. N. Huang, S. M. Yang, L. J. Wang, Y. Jiang, Z. S. Zhou, M. Y. Zheng, J. L. Jiang, S. H. Li and F. N. Li, Evaluation of novel N-(piperidine-4-yl)benzamide derivatives as potential cell cycle inhibitors in HepG2 cells, Chem. Biol. Drug Des.86 (2015) 223–231; https://doi.org/10.1111/cbdd.12484">https://doi.org/10.1111/cbdd.1248410.1111/cbdd.12484
  46. 46. P. Martins, J. Jesus, S. Santos, L. R. Raposo, C. Roma-Rodrigues, P. V. Baptista and A. R. Fernandes, Heterocyclic anticancer compounds: recent advances and the paradigm shift towards the use of nanomedicine’s tool box, Molecules20 (2015) 16852–16891; https://doi.org/10.3390/molecules200916852">https://doi.org/10.3390/molecules20091685210.3390/molecules200916852
  47. 47. S. Knasmüller, W. Parzefall, R. Sanyal, S. Ecker, C. Schwab, M. Uhl, V. Mersch-Sundermann, G. Williamson, G. Hietsch, T. Langer, F. Darroudi and A. T. Natarajan, Use of metabolically competent human hepatoma cells for the detection of mutagens and antimutagens, Mutat. Res./Fund. Mol. Mech. Mutagen.402 (1998) 185–202; https://doi.org/10.1016/S0027-5107(97)00297-2">https://doi.org/10.1016/S0027-5107(97)00297-210.1016/S0027-5107(97)00297-2
  48. 48. V. Mersch-Sundermann, S. Knasmüller, X. J. Wu, F. Darroudi and F. Kassie, Use of a human-derived liver cell line for the detection of cytoprotective, antigenotoxic and cogenotoxic agents, Toxicology198 (2004) 329–340; https://doi.org/10.1016/j.tox.2004.02.009">https://doi.org/10.1016/j.tox.2004.02.00910.1016/j.tox.2004.02.009
  49. 49. Y. Sıcak, E. E. Oruç-Emre, M. Öztürk, T. Taşkın-Tok and A. Karaküçük-Iyidoğan, Novel fluorine-containing chiral hydrazide-hydrazones: Design, synthesis, structural elucidation, antioxidant and anticholinesterase activity, and in silico studies, Chirality (2019) https://doi.org/10.1002/chir.23102">https://doi.org/10.1002/chir.23102; ahead of print.10.1002/chir.23102
  50. 50. D. X. Tan, L. D. Chen, B. Poeggeler, L. C. Manchester and R. J. Reiter, Melatonin: a potent, endogenous hydroxyl radical scavenger, Endocr. J.1 (1993) 57–60.
  51. 51. R. Reiter, L. Tang, J. J. Garcia and A. Munoz-Hoyos, Pharmacological actions of melatonin in oxygen radical pathophysiology, Life Sci.60 (1997) 2255–2271; https://doi.org/10.1016/S0024-3205(97)00030-1">https://doi.org/10.1016/S0024-3205(97)00030-110.1016/S0024-3205(97)00030-1
  52. 52. R. Hardeland, Antioxidative protection by melatonin: multiplicity of mechanisms from radical detoxification to radical avoidance, Endocrine27 (2005) 119–130; https://doi.org/10.1385/ENDO:27:2:119">https://doi.org/10.1385/ENDO:27:2:11910.1385/ENDO:27:2:119
  53. 53. L. Deferme, J. J. Briedé, S. M. H. Claessen, D. G. J. Jennen, R. Cavill and J. C. S. Kleinjans, Time series analysis of oxidative stress response patterns in HepG2: a toxicogenomics approach, Toxicology306 (2013) 24–34; https://doi.org/10.1016/j.tox.2013.02.001">https://doi.org/10.1016/j.tox.2013.02.00110.1016/j.tox.2013.02.001
DOI: https://doi.org/10.2478/acph-2020-0026 | Journal eISSN: 1846-9558 | Journal ISSN: 1330-0075
Language: English
Page range: 303 - 324
Accepted on: Sep 12, 2019
Published on: Feb 17, 2020
Published by: Croatian Pharmaceutical Society
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year
Related subjects:

© 2020 Diana Tzankova, Stanislava Vladimirova, Denitsa Aluani, Yordan Yordanov, Lily Peikova, Maya Georgieva, published by Croatian Pharmaceutical Society
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.