Have a personal or library account? Click to login

Exploring the potential effect and mechanisms of protocatechuic acid on human hair follicle melanocytes

Open Access
|May 2020

References

  1. 1. X. T. Truong, S. H. Park and Y. G. Lee, Protocatechuic acid from pear inhibits melanogenesis in melanoma cells, Int. J. Mol. Sci.18 (2017) 1–10; https://doi.org/10.3390/ijms1808180910.3390/ijms18081809557819628825660
  2. 2. K. Krzysztoforska, D. Mirowska-Guzel and E. Widy-Tyszkiewicz, Pharmacological effects of protocatechuic acid and its therapeutic potential in neurodegenerative diseases: review on the basis of in vitro and in vivo studies in rodents and humans, Nutr. Neurosci.22 (2017) 72–82; https://doi.org/10.1080/1028415X.2017.135454310.1080/1028415X.2017.135454328745142
  3. 3. R. Hornedo-Ortega, M. A. Álvarez-Fernández, A. B. Cerezo, T. Richard, A. M. Troncoso and M. C. García Parrilla, Protocatechuic acid: inhibition of fibril formation, destabilization of pre-formed fibrils of amyloid-β and α-synuclein, and neuroprotection, J. Agric. Food Chem.64 (2016) 7722–7732; https://doi.org/10.1021/acs.jafc.6b0321710.1021/acs.jafc.6b0321727686873
  4. 4. R. Arslan, S. Aydin and D. Nemutlu Samur, The possible mechanisms of protocatechuic acid-induced central analgesia, Saudi Pharm. J.26 (2018) 541–545; https://doi.org/10.1016/j.jsps.2018.02.00110.1016/j.jsps.2018.02.001596264329844727
  5. 5. F. V. Filipp, S. Birlea and M. W. Bosenberg, Frontiers in pigment cell and melanoma research, Pigment Cell Melanoma Res.31 (2018) 728–735; https://doi.org/10.1111/pcmr.1272810.1111/pcmr.12728670183730281213
  6. 6. P. Janiani, P. R. Bhat and V. A. Trasad, Evaluation of the intensity of gingival melanin pigmentation at different age groups in the Indian population: An observational study, J. Indian. Soc. Pedod. Prev. Dent.36 (2018) 329–333; https://doi.org/10.4103/JISPPD.JISPPD_192_1710.4103/JISPPD.JISPPD_192_1730324920
  7. 7. W. C. Liao, Y. T. Huang and L. P. Lu, Antioxidant ability and stability studies of 3-O-ethyl ascorbic acid a cosmetic tyrosinase inhibitor, J. Cosmet. Sci.69 (2018) 233–243; https://doi.org/10.1102/30311899
  8. 8. D. J. Tobin, S. R. Colen and J. C. Bystryn, Isolation and long term culture of human hair follicle melanocytes, J. Invest. Dermatol.104 (1995) 86–89; https://doi.org/10.1111/1523-1747.ep1261357310.1111/1523-1747.ep126135737528247
  9. 9. S. Wojcik, D. Weidinger and S. Ständer, Functional characterization of the extranasal OR2A4/7 expressed in human melanocytes, Exp. Dermatol.27 (2018) 1216–1223; https://doi.org/10.1111/exd.1376410.1111/exd.1376430091289
  10. 10. H. Y. Kim, S. Kishor Sah and S. Choi, Inhibitory effects of extracellular superoxide dismutase on ultraviolet B-induced melanogenesis in murine skin and melanocytes, Life Sci.210 (2018) 201–208; https://doi.org/10.1016/j.lfs.2018.08.05610.1016/j.lfs.2018.08.05630145155
  11. 11. M. Otreba, J. Rok, E. Buszman and D. Wrzesniok, Regulation of melanogenesis: the role of cAMP and MITF, Postepy Hig. Med. Dosw.66 (2012) 33–40; https://doi.org/10.1024/22371403
  12. 12. J. Y. Lee, Y. R. Cho, J. H. Park, E. K. Ahn, W. Jeong, H. S Shin, M. S. Kim, S. H. Yang and J. S. Oh, Anti-melanogenic and anti-oxidant activities of ethanol extract of Kummerowia striata: Kummerowia striata regulate anti-melanogenic activity through down-regulation of TRP-1, TRP-2 and MITF expression, Toxicol. Rep.6 (2019) 10–17; https://doi.org/10.1016/j.toxrep.2018.11.00510.1016/j.toxrep.2018.11.005625812930510908
  13. 13. M. Kanlayavattanakul and N. Lourith, Plants and natural products for the treatment of skin hyperpigmentation-a review, Planta Med.84 (2018) 988–1006; https://doi.org/10.1055/a-0583-041010.1055/a-0583-041029506294
  14. 14. M. Otręba, A. Beberok and D. Wrześniok, In vitro melanogenesis inhibition by fluphenazine and prochlorperazine in normal human melanocytes lightly pigmented, DARU J. Pharm. Sci.26 (2018) 85–89; https://doi.org/10.1007/s40199-018-0206-410.1007/s40199-018-0206-4615448130159761
  15. 15. A. Tuerxuntayi, Y. Q. Liu, A. Tulake, M. Kabas, A. Eblimit, H. A. Aisa, Kaliziri extract upregulates tyrosinase, TRP-1, TRP-2 and MITF expression in murine B16 melanoma cells, BMC Complement Altern. Med.14 (2014) 166–170; https://doi.org/10.1186/1472-6882-14-16610.1186/1472-6882-14-166409195724884952
DOI: https://doi.org/10.2478/acph-2020-0023 | Journal eISSN: 1846-9558 | Journal ISSN: 1330-0075
Language: English
Page range: 539 - 549
Accepted on: Jan 24, 2020
Published on: May 13, 2020
Published by: Croatian Pharmaceutical Society
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year
Related subjects:

© 2020 Bo Li, Jun Tan, Bosheng Zou, Xiaojia Liu, Yiling Yu, published by Croatian Pharmaceutical Society
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.