Have a personal or library account? Click to login
Differential effects of acute and chronic treatment with the flavonoid chrysin on anxiety-like behavior and Fos immunoreactivity in the lateral septal nucleus in rats Cover

Differential effects of acute and chronic treatment with the flavonoid chrysin on anxiety-like behavior and Fos immunoreactivity in the lateral septal nucleus in rats

Open Access
|Feb 2020

References

  1. 1. C. Wolfman, H. Viola, H. Paladini, F. Dajas and J. H. Medina, Possible anxiolytic effects of chrysin, a central benzodiazepine receptor ligand isolated from Passiflora coerulea, Pharmacol. Biochem. Behav. 47 (1994) 1–4; https://doi.org/10.1016/0091-3057(94)90103-1">https://doi.org/10.1016/0091-3057(94)90103-110.1016/0091-3057(94)90103-1
  2. 2. C. B. Filho, C. R. Jesse, F. Donato, R. Giacomeli, L. Del Fabbro, M. da Silva Antunes, M. G. de Gomes, A. T. Goes, S. P. Boeira, M. Prigol and L. C. Souza, Chronic unpredictable mild stress decreases BDNF and NGF levels and Na+,K+-ATPase activity in the hippocampus and prefrontal cortex of mice: antidepressant effect of chrysin, Neuroscience289 (2015) 367–380; https://doi.org/10.1016/j.neuroscience.2014.12.048">https://doi.org/10.1016/j.neuroscience.2014.12.04810.1016/j.neuroscience.2014.12.048
  3. 3. C. H. Vinkers and B. Olivier, Mechanisms underlying tolerance after long-term benzodiazepine use: A future for subtype-selective GABAA receptor modulators? Adv. Pharmacol. Sci.2012 (2012) Article ID 416864 (19 pages); https://doi.org/10.1155/2012/416864">https://doi.org/10.1155/2012/41686410.1155/2012/416864
  4. 4. T. P. Sheehan, R. A. Chambers and D. S. Russell, Regulation of affect by the lateral septum: implications for neuropsychiatry, Brain. Res. Rev.46 (2004) 71–117; https://doi.org/10.1016/j.brainresrev.2004.04.009">https://doi.org/10.1016/j.brainresrev.2004.04.00910.1016/j.brainresrev.2004.04.009
  5. 5. B. Gaszner, V. Kormos, T. Kozicz, H. Hashimoto, D. Reglodi and Z. Helyes, The behavioral pheno-type of pituitary adenylate-cyclase activating polypeptide-deficient mice in anxiety and depression tests is accompanied by blunted c-Fos expression in the bed nucleus of the stria terminalis, central projecting Edinger-Westphal nucleus, ventral lateral septum, and dorsal raphe nucleus, Neuroscience202 (2012) 283–299; https://doi.org/10.1016/j.neuroscience.2011.11.046">https://doi.org/10.1016/j.neuroscience.2011.11.04610.1016/j.neuroscience.2011.11.046
  6. 6. B. Lkhagvasuren, T. Oka, Y. Nakamura, H. Hayashi, N. Sudo and K. Nakamura, Distribution of Fos-immunoreactive cells in rat forebrain and midbrain following social defeat stress and diazepam treatment, Neuroscience272 (2014) 34–57; https://doi.org/10.1016/j.neuroscience.2014.04.047">https://doi.org/10.1016/j.neuroscience.2014.04.04710.1016/j.neuroscience.2014.04.047
  7. 7. National Research Council, Guide for the Care and Use of Laboratory Animals, 7th ed., National Academy Press, Washington (DC) 1996.
  8. 8. Estados Unidos Mexicanos, Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación, Norma Oficial Mexicana Nom-062-Zoo-1999, Especificaciones Tecnicas Para La Produccion, Cuidado y Uso de los Animales de Laboratorio, Diario Oficial (Primera Sección), pp. 107, Aug 22, 2001; https://www.gob.mx/cms/uploads/attachment/file/203498/NOM-062-ZOO-1999_220801.pdf; last access date July 30, 2019
  9. 9. C. M. Contreras, J. F. Rodríguez-Landa, R. I. García-Ríos, J. Cueto-Escobedo, G. Guillen-Ruiz and B. Bernal-Morales, Myristic acid produces anxiolytic-like effects in Wistar rats in the elevated plus maze, BioMed. Res. Int.2014 (2014) Article ID 492141 (8 pages); https://doi.org/10.1155/2014/492141">https://doi.org/10.1155/2014/49214110.1155/2014/492141
  10. 10. W. M. S. Russell, R. L. Burch and C. W. Hume, The Principles of Humane Experimental Technique, Johns Hopkins Bloomberg School of Public Health, Baltimore 2005; http://altweb.jhsph.edu/pubs/books/humane_exp/het-toc; last access date July 30, 2019
  11. 11. F. Borsini, Role of the serotonergic system in the forced swimming test, Neurosci. Biobehav. Rev.19 (1995) 377–395; https://doi.org/10.1016/0149-7634(94)00050-B">https://doi.org/10.1016/0149-7634(94)00050-B10.1016/0149-7634(94)00050-B
  12. 12. M. Caba, M. Pabello, M. L. Moreno and E. Meza, Main and accessory olfactory bulbs and their projections in the brain anticipate feeding in food-entrained rats, Chronobiol. Int.31 (2014) 869–877; https://doi.org/10.3109/07420528.2014.918625">https://doi.org/10.3109/07420528.2014.91862510.3109/07420528.2014.91862524915133
  13. 13. G. Paxinos and C. Watson, The Rat Brain in Stereotaxic Coordinates, 4th ed., Academic Press, New York 1998.
  14. 14. R. J. Rodgers, B. J. Cao, A. Dalvi and A. Holmes, Animal models of anxiety: an ethological perspective, Braz. J. Med. Biol. Res.30 (1997) 289–304; https://doi.org/10.1590/S0100-879X1997000300002">https://doi.org/10.1590/S0100-879X199700030000210.1590/S0100-879X19970003000029246227
  15. 15. J. F. Rodríguez-Landa, F. Hernández-López, J. Cueto-Escobedo, E. V. Herrera-Huerta, E. Rivadeneyra-Domínguez, B. Bernal-Morales and E. Romero-Avendaño, Chrysin (5,7-dihydroxyflavone) exerts anxiolytic-like effects through GABAA receptors in a surgical menopause model in rats, Biomed. Pharmacother.109 (2019) 2387–2395; https://doi.org/10.1016/j.biopha.2018.11.111">https://doi.org/10.1016/j.biopha.2018.11.11110.1016/j.biopha.2018.11.11130551498
  16. 16. S. Saiyudthong and C. A. Marsden, Acute effects of bergamot oil on anxiety-related behaviour and corticosterone level in rats, Phytother. Res.25 (2011) 858–862; https://doi.org/10.1002/ptr.3325">https://doi.org/10.1002/ptr.332510.1002/ptr.332521105176
  17. 17. J. Liu, J. C. Garza, J. Bronner, C. S. Kim, W. Zhang and X. Y. Lu, Acute administration of leptin produces anxiolytic-like effects: a comparison with fluoxetine, Psychopharmacology (Berlin) 207 (2010) 535–545; https://doi.org/10.1007/s00213-009-1684-3">https://doi.org/10.1007/s00213-009-1684-310.1007/s00213-009-1684-3405789519823809
  18. 18. M. A. De Medeiros, L. C. Reis and L. E. Mello, Stress-induced c-Fos expression is differentially modulated by dexamethasone, diazepam and imipramine, Neuropsychopharmacology30 (2005) 1246–1256; https://doi.org/10.1038/sj.npp.1300694">https://doi.org/10.1038/sj.npp.130069410.1038/sj.npp.130069415714225
  19. 19. T. Backstrom, D. Haage, M. Lofgren, I. M. Johansson, J. Stromberg, S. Nyberg, L. Andreen, L. Ossewaarde, G. A. van Wingen, S. Turkmen and S. K. Bengtsson, Paradoxical effects of GABA-A modulators may explain sex steroid induced negative mood symptoms in some persons, Neurosciences191 (2011) 46–54; https://doi.org/10.1016/j.neuroscience.2011.03.061">https://doi.org/10.1016/j.neuroscience.2011.03.06110.1016/j.neuroscience.2011.03.06121600269
  20. 20. E. Estrada-Camarena, I. Sollozo-Dupont, D. Islas-Preciado, M. E. González-Trujano, M. Carro-Juárez and C. López-Rubalcava, Anxiolytic- and anxiogenic-like effects of Montanoa tomentosa (Asteraceae): Dependence on the endocrine condition, J. Ethnopharmacol. 241 (2019) 112006; https://doi.org/10.1016/j.jep.2019.112006">https://doi.org/10.1016/j.jep.2019.11200610.1016/j.jep.2019.11200631153863
DOI: https://doi.org/10.2478/acph-2020-0022 | Journal eISSN: 1846-9558 | Journal ISSN: 1330-0075
Language: English
Page range: 387 - 397
Accepted on: Sep 4, 2019
Published on: Feb 17, 2020
Published by: Croatian Pharmaceutical Society
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year
Related subjects:

© 2020 León Jesús Germán-Ponciano, Abraham Puga-Olguín, María De Jesús Rovirosa-Hernández, Mario Caba, Enrique Meza, Juan Francisco Rodríguez-Landa, published by Croatian Pharmaceutical Society
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.