1. A. Duenas-Gonzalez, M. Candelaria, C. Perez-Plascencia, E. Perez-Cardenas, E. Cruz-Hernandez and L. A. Herrera, Valproic acid as epigenetic cancer drug: preclinical, clinical and transcriptional effects on solid tumors, Cancer Treat. Rev.34 (2008) 206–222; https://doi.org/10.1016/j.ctrv.2007.11.00310.1016/j.ctrv.2007.11.003
3. A. Yarmohamadi, J. Asadi, R. Gharaei, M. Mir and A. K. Khoshnazar, Valproic acid, a histone deacetylase inhibitor, enhances radiosensitivity in breast cancer cell line, J. Radiat. Cancer Res.9 (2018) 86–92; https://doi.org/10.4103/jrcr.jrcr_37_1710.4103/jrcr.jrcr_37_17
5. A. Grabarska, M. Dmoszynska-Graniczka, E. Nowosadzka and A. Stepulak, Histone deacetylase inhibitors - Molecular mechanisms of actions and clinical applications, Postepy Hig. Med. Dosw.67 (2013) 722–735.10.5604/17322693.106138124018438
7. C. Tsai, J. S. Leslie, L. G. Franko-Tobin, M. C. Prasnal, T. Yang, L. V. Mackey, J. A. Fuselier, D. H. Coy, M. Liu, C. Yu and L. Sun, Valproic acid suppresses cervical cancer tumor progression possibly via activating Notch1 signaling and enhances receptor-targeted cancer chemotherapeutic via activating somatostatin receptor type II, Arch. Gynecol. Obstet.288 (2013) 393–400; https://doi.org/10.1007/s00404-013-2762-710.1007/s00404-013-2762-723435724
8. G. Sun, L. V. Mackey, D. H. Coy, C. Y. Yu and L. Sun, The histone deacetylase inhibitor valproic acid induces cell growth arrest in hepatocellular carcinoma cells via suppressing Notch signaling, J. Cancer6 (2015) 996–1004; https://doi.org/10.7150/jca.1213510.7150/jca.12135456584926366213
11. L. Zhang, Y. Han, Q. Jiang, C. Wang and X. Chen, Trend of histone deacetylase inhibitors in cancer therapy: isoform selectivity or multitargeted strategy, Med. Res. Rev.35 (2015) 63–84; https://doi.org/10.1002/med.2132010.1002/med.2132024782318
12. D. Wang, Y. Jing, S. Ouyang, B. Liu, T. Zhu, H. Niu and Y. Tian, Inhibitory effect of valproic acid on bladder cancer in combination with chemotherapeutic agents in vitro and in vivo, Oncol. Lett.6 (2013) 1492–1498; https://doi.org/10.3892/ol.2013.156510.3892/ol.2013.1565381378824179547
17. S. P. H. Alexander, A. P. Davenport, E. Kelly, N. Marrion, J. A. Peters, H. E. Benson, E. Faccenda, A. J. Pawson, J. L. Sharman, C. Southan and J. A. Davies, The concise guide to PHARMACOLOGY 2015/16: G protein coupled receptors, Br. J. Pharmacol.172 (2015) 5744–5869; https://doi.org/10.1111.bph.13348
18. N. Tarasenko, H. Chekroun-Setti, A. Nudelman and A. Rephaeli, Comparison of the anticancer properties of a novel valproic acid prodrug to leading histone deacetylase inhibitors, J. Cell Biochem.119 (2018) 3417–3428; https://doi.org/10.1002/jcb.2651210.1002/jcb.2651229135083
21. M. Terranova-Barberio, M. S. Roca, A. I. Zotti, A. Leone, F. Bruzzese, C. Vitagliano, G. Scogliamiglio, D. Russo, G. D’Angelo, R. Franco, A. Budillon and E. Digennaro, Valproic acid potentiates the anti-cancer activity of capecitabine in vitro and in vivo in breast cancer models via induction of thymidine phosphorylase expression, Oncotarget7 (2016) 7715–7731; https://doi.org/10.18632/oncotarget.680210.18632/oncotarget.6802488494926735339
22. S. Jawed, B. Kim, T. Ottenhof, G. M. Brown, E. S. Werstiuk and L. P. Niles, Human melatonin MT1 receptor induction by valproic acid and its effects in combination with melatonin on MCF-7 breast cancer cell proliferation, Eur. J. Pharmacol.560 (2007) 17–22; https://doi.org/10.1016/j.ejphar.2007.01.02210.1016/j.ejphar.2007.01.02217303109
23. D. Witt, P. Burfeind, S. Hardenberg, L. Opitz, G. Salinas-Riester, F. Bremmer, S. Schweyer, P. Thelen, J. Neesen and S. Kaulfuss, Valproic acid inhibits the proliferation of cancer cells by re-expressing cyclin D2, Carcinogenesis34 (2013) 1115–1124; https://doi.org/10.1093/carcin/bgt01910.1093/carcin/bgt01923349020
24. H. Fredly, B. T. Gjertsen and O. Bruserud, Histone deacetylase inhibition in the treatment of acute myeloid leukemia: the effects of valproic acid on leukemic cells, and the clinical and experimental evidence for combining valproic acid with other antileukemic agents, Clin. Epigenetics5 (2013) 12 (13 pages); https://doi.org/10.1186/1868-7083-5-1210.1186/1868-7083-5-12373388323898968
25. J. P. Issa, G. Garcia-Manero, X. Huang, J. Cortes, F. Ravandi, E. Jabbour, G. Borthakur, M. Brandt, S. Pierce and H. Kantarjian, Results of phase 2 randomized study of low-dose decitabine with or without valproic acid in patients with myelodysplastic syndrome and acute myelogenous leukemia, Cancer121 (2015) 556–561; https://doi.org/10.1002/cncr.2908510.1002/cncr.29085432000025336333
26. G. Garcia-Manero, H. M. Kantarjian, B. Sanchez-Gonzalez, H. Yang, G. Rosner, S. Verstovsek, M. Rytting, W. G. Wierda, F. Ravandi, C. Koller, L. Xiao, S. Faderl, Z. Estrov, J. Cortes, S. O´Brien, E. Estey, C. Bueso-Ramos, J. Fiorentino, E. Jabbour and J. P. Issa, Phase 1/2 study of the combination of 5-aza-2´-deoxycytidine with valproic acid in patients with leukemia, Blood108 (2006) 3271–3279; https://doi.org/10.1182/blood-2006-03-00914210.1182/blood-2006-03-009142189543716882711
27. S. Iwahashi, T. Utsunomiya, S. Imura, Y. Morine, T. Ikemoto, Y. Arakawa, Y. Saito, D. Ishikawa and M. Shimada, Effects of valproic acid in combination with S-1 on advanced pancreatobiliary tract cancers: clinical study phases I/II, Anticancer Res.34 (2014) 5187–5192.
28. M. Kobayakawa and Y. Kojima, Tegafur/gimeracil/oteracil (S-1) approved for the treatment of advanced gastric cancer in adults when given in combination with cisplatin: a review comparing it with other fluoropyrimidine-based therapies, Oncol. Targets Ther.4 (2011) 193–201; https://doi.org/10.2147/OTT.S1905910.2147/OTT.S19059323327822162925
29. B. F. Chu, M. J. Karpenko, Z. Liu, J. Aimiuwu, M. A. Villalona-Calero, K. K. Chan, M. R. Grever and G. A. Otterson, Phase I study of 5-aza-2´-deoxycytidine in combination with valproic acid in non-small-cell lung cancer, Cancer Chemother. Pharmacol.71 (2013) 115–121; https://doi.org/10.1007/s00280-012-1986-810.1007/s00280-012-1986-823053268
31. C. Damaskos, N. Garmpis, S. Valsami, M. Kontos, E. Spartalis, T. Kalampokas, E. Kalampokas, D. Moris, A. Daskalopoulou, S. Davakis, G. Tsourouflis, K. Kontzoglou, D. Perrea, N. Nikiteas and D. Dimitroulis, Histone deacetylase inhibitors: An attractive therapeutic strategy against breast cancer, Anticancer Res.37 (2017) 35–46; https://doi.org/10.21873/anticanres.1128610.21873/anticanres.1128628011471
33. G. M. Matthews, G. S. Howarth and R. N. Butler, Short-chain fatty acids induce apoptosis in colon cancer cells associated with changes to intracellular redox state and glucose metabolism, Chemotherapy58 (2012) 102–109; https://doi.org/10.1159/00033567210.1159/00033567222488147
36. M. S. Al-Keilani, K. H. Alzoubi and S. A. Jaradat, The effect of combined treatment with sodium phenylbutyrate and cisplatin, erlotinib, or gefitinib on resistant NSCLC cells, Clin. Pharmacol.10 (2018) 135–140; https://doi.org/10.2147/CPAA.S17407410.2147/CPAA.S174074618690030349406
38. A. Mostoufi, R. Baghgoli and M. Fereidoonnezhad, Synthesis, cytotoxicity, apoptosis and molecular docking studies of novel phenylbutyrate derivatives as potential anticancer agents, Comput. Biol. Chem.80 (2019) 128–137; https://doi.org/10.1016/j.compbiochem.2019.03.008
39. D. J. Morrison and T. Preston, Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism, Gut Microbes7 (2016) 189–200; https://doi.org/10.1080/19490976.2015.11 34082
40. R. Fellows, J. Denizot, C. Stellato, A. Cuomo, P. Jain, E. Stoyanova, S. Balázsi, Z. Hajnády, A. Liebert, J. Kazakevych, H. Blackburn, R. O. Corréa, J. L. Fachi, F. T. Sato, W. R. Ribeiro, C. M. Ferreira, H. Perée, M. Spagnuolo, R. Mattiuz, C. Matoksi, J. Guedes, J. Clark, M, Veldhoen, T. Bonaldi, M. A. R. Vinolo and P. Varga-Weisz, Microbiota derived short chain fatty acids promote histone crotonylation in the colon through histone deacetylases, Nat. Commun.9 (2018) Article ID 105 (15 pages); https://doi.org/10.1038/s41467-017-02651-510.1038/s41467-017-02651-5576062429317660