Have a personal or library account? Click to login
Anticonvulsant valproic acid and other short-chain fatty acids as novel anticancer therapeutics: Possibilities and challenges Cover

Anticonvulsant valproic acid and other short-chain fatty acids as novel anticancer therapeutics: Possibilities and challenges

Open Access
|Feb 2020

References

  1. 1. A. Duenas-Gonzalez, M. Candelaria, C. Perez-Plascencia, E. Perez-Cardenas, E. Cruz-Hernandez and L. A. Herrera, Valproic acid as epigenetic cancer drug: preclinical, clinical and transcriptional effects on solid tumors, Cancer Treat. Rev.34 (2008) 206–222; https://doi.org/10.1016/j.ctrv.2007.11.00310.1016/j.ctrv.2007.11.003
  2. 2. T. Tomson, D. Battino and E. Perucca, Valproic acid after five decades of use in epilepsy: time to reconsider the indications of a time-honoured drug, Lancet Neurol.15 (2016) 210–218; https://doi.org/10.1016/S1474-4422(15)00314-210.1016/S1474-4422(15)00314-2
  3. 3. A. Yarmohamadi, J. Asadi, R. Gharaei, M. Mir and A. K. Khoshnazar, Valproic acid, a histone deacetylase inhibitor, enhances radiosensitivity in breast cancer cell line, J. Radiat. Cancer Res.9 (2018) 86–92; https://doi.org/10.4103/jrcr.jrcr_37_1710.4103/jrcr.jrcr_37_17
  4. 4. S. A. Brodie and J. C. Brandes, Could valproic acid be an effective anticancer agent? The evidence so far, Expert. Rev. Anticancer Ther.14 (2014) 1097–1100; https://doi.org/10.1586/14737140.2014.94032910.1586/14737140.2014.940329457952825017212
  5. 5. A. Grabarska, M. Dmoszynska-Graniczka, E. Nowosadzka and A. Stepulak, Histone deacetylase inhibitors - Molecular mechanisms of actions and clinical applications, Postepy Hig. Med. Dosw.67 (2013) 722–735.10.5604/17322693.106138124018438
  6. 6. L. Sun and D. H. Coy, Anti-convulsant drug valproic acid in cancers and in combination anticancer therapeutics, Mod. Chem. Appl.2 (2014) 1–5; https://doi.org/10.4172/2329-6798.100011810.4172/2329-6798.1000118
  7. 7. C. Tsai, J. S. Leslie, L. G. Franko-Tobin, M. C. Prasnal, T. Yang, L. V. Mackey, J. A. Fuselier, D. H. Coy, M. Liu, C. Yu and L. Sun, Valproic acid suppresses cervical cancer tumor progression possibly via activating Notch1 signaling and enhances receptor-targeted cancer chemotherapeutic via activating somatostatin receptor type II, Arch. Gynecol. Obstet.288 (2013) 393–400; https://doi.org/10.1007/s00404-013-2762-710.1007/s00404-013-2762-723435724
  8. 8. G. Sun, L. V. Mackey, D. H. Coy, C. Y. Yu and L. Sun, The histone deacetylase inhibitor valproic acid induces cell growth arrest in hepatocellular carcinoma cells via suppressing Notch signaling, J. Cancer6 (2015) 996–1004; https://doi.org/10.7150/jca.1213510.7150/jca.12135456584926366213
  9. 9. M. Mottamal, S. Zheng, T. L. Huang and G. Wang, Histone deacetylase inhibitors in clinical studies as templates for new anticancer agents, Molecules20 (2015) 3898–3941; https://doi.org/10.3390/molecules2003389810.3390/molecules20033898437280125738536
  10. 10. C. Mercurio, S. Minucci and P. G. Pelicci, Histone deacetylases and epigenetic therapies of hematological malignancies, Pharmacol. Res.62 (2010) 18–34; https://doi.org/10.1016/j.phrs.2010.02.01010.1016/j.phrs.2010.02.01020219679
  11. 11. L. Zhang, Y. Han, Q. Jiang, C. Wang and X. Chen, Trend of histone deacetylase inhibitors in cancer therapy: isoform selectivity or multitargeted strategy, Med. Res. Rev.35 (2015) 63–84; https://doi.org/10.1002/med.2132010.1002/med.2132024782318
  12. 12. D. Wang, Y. Jing, S. Ouyang, B. Liu, T. Zhu, H. Niu and Y. Tian, Inhibitory effect of valproic acid on bladder cancer in combination with chemotherapeutic agents in vitro and in vivo, Oncol. Lett.6 (2013) 1492–1498; https://doi.org/10.3892/ol.2013.156510.3892/ol.2013.1565381378824179547
  13. 13. X. Yuan, H. Wu, H. Xu, H. Xiong, Q. Chu, S. Yu, G. S. Wu and K. Wu, Notch signaling: an emerging therapeutic target for cancer treatment, Cancer Lett.369 (2015) 20–27; https://doi.org/10.1016/j.canlet.2015.07.04810.1016/j.canlet.2015.07.04826341688
  14. 14. K. Hori, A. Sen and S. Artavanis-Tsakonas, Notch signaling at a glance, J. Cell Sci.126 (2013) 2135–2140; https://doi.org/10.1242/jcs.12730810.1242/jcs.127308367293423729744
  15. 15. L. G. Franko-Tobin, L. V. Mackey and W. Huang, Notch1-mediated tumor suppression in cervical cancer with the involvement of sst signaling and its application in enhanced SSTR-targeted therapeutics, Oncologist17 (2011) 220–232; https://doi.org/10.1634/theoncologist.2011-026910.1634/theoncologist.2011-0269328617122291092
  16. 16. R. Bar-Shavit, M. Maoz, A. Kancharla, J. K. Nag, D. Agranovich, S. Grisaru-Granovsky and B. Uziely, G protein-coupled receptors in cancer, Int. J. Mol. Sci.17 (2016) 1320 (16 pages); https://doi.org/10.3390/ijms1708132010.3390/ijms17081320500071727529230
  17. 17. S. P. H. Alexander, A. P. Davenport, E. Kelly, N. Marrion, J. A. Peters, H. E. Benson, E. Faccenda, A. J. Pawson, J. L. Sharman, C. Southan and J. A. Davies, The concise guide to PHARMACOLOGY 2015/16: G protein coupled receptors, Br. J. Pharmacol.172 (2015) 5744–5869; https://doi.org/10.1111.bph.13348
  18. 18. N. Tarasenko, H. Chekroun-Setti, A. Nudelman and A. Rephaeli, Comparison of the anticancer properties of a novel valproic acid prodrug to leading histone deacetylase inhibitors, J. Cell Biochem.119 (2018) 3417–3428; https://doi.org/10.1002/jcb.2651210.1002/jcb.2651229135083
  19. 19. X. Ni, L. Li and G. Pan, HDAC inhibitor-induced drug resistance involving ATP-binding cassette transporters (review), Oncol. Lett.9 (2015) 515–521; https://doi.org/10.3892/ol.2014.271410.3892/ol.2014.2714430156025624882
  20. 20. J. C. Ame, C. Spenlehauer and G. Murcia, The PARP superfamily, BioEssays26 (2004) 882–893; https://doi.org/10.1002/bies.2008510.1002/bies.2008515273990
  21. 21. M. Terranova-Barberio, M. S. Roca, A. I. Zotti, A. Leone, F. Bruzzese, C. Vitagliano, G. Scogliamiglio, D. Russo, G. D’Angelo, R. Franco, A. Budillon and E. Digennaro, Valproic acid potentiates the anti-cancer activity of capecitabine in vitro and in vivo in breast cancer models via induction of thymidine phosphorylase expression, Oncotarget7 (2016) 7715–7731; https://doi.org/10.18632/oncotarget.680210.18632/oncotarget.6802488494926735339
  22. 22. S. Jawed, B. Kim, T. Ottenhof, G. M. Brown, E. S. Werstiuk and L. P. Niles, Human melatonin MT1 receptor induction by valproic acid and its effects in combination with melatonin on MCF-7 breast cancer cell proliferation, Eur. J. Pharmacol.560 (2007) 17–22; https://doi.org/10.1016/j.ejphar.2007.01.02210.1016/j.ejphar.2007.01.02217303109
  23. 23. D. Witt, P. Burfeind, S. Hardenberg, L. Opitz, G. Salinas-Riester, F. Bremmer, S. Schweyer, P. Thelen, J. Neesen and S. Kaulfuss, Valproic acid inhibits the proliferation of cancer cells by re-expressing cyclin D2, Carcinogenesis34 (2013) 1115–1124; https://doi.org/10.1093/carcin/bgt01910.1093/carcin/bgt01923349020
  24. 24. H. Fredly, B. T. Gjertsen and O. Bruserud, Histone deacetylase inhibition in the treatment of acute myeloid leukemia: the effects of valproic acid on leukemic cells, and the clinical and experimental evidence for combining valproic acid with other antileukemic agents, Clin. Epigenetics5 (2013) 12 (13 pages); https://doi.org/10.1186/1868-7083-5-1210.1186/1868-7083-5-12373388323898968
  25. 25. J. P. Issa, G. Garcia-Manero, X. Huang, J. Cortes, F. Ravandi, E. Jabbour, G. Borthakur, M. Brandt, S. Pierce and H. Kantarjian, Results of phase 2 randomized study of low-dose decitabine with or without valproic acid in patients with myelodysplastic syndrome and acute myelogenous leukemia, Cancer121 (2015) 556–561; https://doi.org/10.1002/cncr.2908510.1002/cncr.29085432000025336333
  26. 26. G. Garcia-Manero, H. M. Kantarjian, B. Sanchez-Gonzalez, H. Yang, G. Rosner, S. Verstovsek, M. Rytting, W. G. Wierda, F. Ravandi, C. Koller, L. Xiao, S. Faderl, Z. Estrov, J. Cortes, S. O´Brien, E. Estey, C. Bueso-Ramos, J. Fiorentino, E. Jabbour and J. P. Issa, Phase 1/2 study of the combination of 5-aza-2´-deoxycytidine with valproic acid in patients with leukemia, Blood108 (2006) 3271–3279; https://doi.org/10.1182/blood-2006-03-00914210.1182/blood-2006-03-009142189543716882711
  27. 27. S. Iwahashi, T. Utsunomiya, S. Imura, Y. Morine, T. Ikemoto, Y. Arakawa, Y. Saito, D. Ishikawa and M. Shimada, Effects of valproic acid in combination with S-1 on advanced pancreatobiliary tract cancers: clinical study phases I/II, Anticancer Res.34 (2014) 5187–5192.
  28. 28. M. Kobayakawa and Y. Kojima, Tegafur/gimeracil/oteracil (S-1) approved for the treatment of advanced gastric cancer in adults when given in combination with cisplatin: a review comparing it with other fluoropyrimidine-based therapies, Oncol. Targets Ther.4 (2011) 193–201; https://doi.org/10.2147/OTT.S1905910.2147/OTT.S19059323327822162925
  29. 29. B. F. Chu, M. J. Karpenko, Z. Liu, J. Aimiuwu, M. A. Villalona-Calero, K. K. Chan, M. R. Grever and G. A. Otterson, Phase I study of 5-aza-2´-deoxycytidine in combination with valproic acid in non-small-cell lung cancer, Cancer Chemother. Pharmacol.71 (2013) 115–121; https://doi.org/10.1007/s00280-012-1986-810.1007/s00280-012-1986-823053268
  30. 30. K. Steliou, M. S. Boosalis, S. P. Perrine, J. Sangerman and D. V. Faller, Butyrate histone deacetylase inhibitors, Biores. Open Access1 (2012) 192–198; https://doi.org/10.1089/biores.2012.022310.1089/biores.2012.0223355923523514803
  31. 31. C. Damaskos, N. Garmpis, S. Valsami, M. Kontos, E. Spartalis, T. Kalampokas, E. Kalampokas, D. Moris, A. Daskalopoulou, S. Davakis, G. Tsourouflis, K. Kontzoglou, D. Perrea, N. Nikiteas and D. Dimitroulis, Histone deacetylase inhibitors: An attractive therapeutic strategy against breast cancer, Anticancer Res.37 (2017) 35–46; https://doi.org/10.21873/anticanres.1128610.21873/anticanres.1128628011471
  32. 32. M. S. Abaza, A. Afzal and M. Afzal, Short-chain fatty acids are antineoplastic agents, Fatty Acids (2017) 57–70; https://doi.org/10.5772/intechopen.6844110.5772/intechopen.68441
  33. 33. G. M. Matthews, G. S. Howarth and R. N. Butler, Short-chain fatty acids induce apoptosis in colon cancer cells associated with changes to intracellular redox state and glucose metabolism, Chemotherapy58 (2012) 102–109; https://doi.org/10.1159/00033567210.1159/00033567222488147
  34. 34. J. H. Cho, M. Dimri and G. P. Dimri, MicroRNA-31 is a transcriptional target of histone deacetylase inhibitors and a regulator of cellular senescence, J. Biol. Chem.290 (2015) 10555–10567; https://doi.org/10.1074/jbc.M114.62436110.1074/jbc.M114.624361440036225737447
  35. 35. P. Vishwakarma, A. Kumar, M. Sharma, M. Garg and K. Saxena, Histone deacetylase inhibitors: pharmacotherapeutic implications as epigenetic modifier, Int. J. Clin. Pharmacol.3 (2014) 27–36; https://doi.org/10.5455/2319-2003.ijbcp2014023610.5455/2319-2003.ijbcp20140236
  36. 36. M. S. Al-Keilani, K. H. Alzoubi and S. A. Jaradat, The effect of combined treatment with sodium phenylbutyrate and cisplatin, erlotinib, or gefitinib on resistant NSCLC cells, Clin. Pharmacol.10 (2018) 135–140; https://doi.org/10.2147/CPAA.S17407410.2147/CPAA.S174074618690030349406
  37. 37. A. R. Z. Almotairy, V. Gandin, L. Morrison, C. Marzan, D. Montagner and A. Erxleban, Antitumor platinum(IV) derivatives of carboplatin and the histone deacetylase inhibitor 4-phenylbutyric acid, J. Inorg. Biochem.177 (2017) 1–7; https://doi.org/10.1016/j.jinorgbio.2017.09.00910.1016/j.jinorgbio.2017.09.00928918353
  38. 38. A. Mostoufi, R. Baghgoli and M. Fereidoonnezhad, Synthesis, cytotoxicity, apoptosis and molecular docking studies of novel phenylbutyrate derivatives as potential anticancer agents, Comput. Biol. Chem.80 (2019) 128–137; https://doi.org/10.1016/j.compbiochem.2019.03.008
  39. 39. D. J. Morrison and T. Preston, Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism, Gut Microbes7 (2016) 189–200; https://doi.org/10.1080/19490976.2015.11 34082
  40. 40. R. Fellows, J. Denizot, C. Stellato, A. Cuomo, P. Jain, E. Stoyanova, S. Balázsi, Z. Hajnády, A. Liebert, J. Kazakevych, H. Blackburn, R. O. Corréa, J. L. Fachi, F. T. Sato, W. R. Ribeiro, C. M. Ferreira, H. Perée, M. Spagnuolo, R. Mattiuz, C. Matoksi, J. Guedes, J. Clark, M, Veldhoen, T. Bonaldi, M. A. R. Vinolo and P. Varga-Weisz, Microbiota derived short chain fatty acids promote histone crotonylation in the colon through histone deacetylases, Nat. Commun.9 (2018) Article ID 105 (15 pages); https://doi.org/10.1038/s41467-017-02651-510.1038/s41467-017-02651-5576062429317660
DOI: https://doi.org/10.2478/acph-2020-0021 | Journal eISSN: 1846-9558 | Journal ISSN: 1330-0075
Language: English
Page range: 291 - 301
Accepted on: Sep 4, 2019
Published on: Feb 17, 2020
Published by: Croatian Pharmaceutical Society
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year
Related subjects:

© 2020 Katarzyna Lipska, Anna Gumieniczek, Agata A. Filip, published by Croatian Pharmaceutical Society
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.