Have a personal or library account? Click to login
Poly(3-hydroxybutyrate): Promising biomaterial for bone tissue engineering Cover

Poly(3-hydroxybutyrate): Promising biomaterial for bone tissue engineering

By: Barbara Dariš and  Željko Knez  
Open Access
|Nov 2019

References

  1. 1. H. Tian, Z. Tang, X. Zhuang, X. Chen and X. Jing, Biodegradable synthetic polymers: Preparation, functionalization and biomedical application, Prog. Polym. Sci. 37 (2012) 237−280; https://doi.org/10.1016/j.progpolymsci.2011.06.004
  2. 2. D. B. Hazer, E. Kiliçay and B. Hazer, Poly(3-hydroxyalkanoate)s: Diversification and biomedical applications A state of art review, Mater. Sci. Eng. C 32 (2012) 637−647; https://doi.org/10.1016/j.msec.2012.01.021
  3. 3. M. Goonoo, A. Bhaw-Luximon, P. Passanha, S. R. Esteves and D. Jhurry, Third generation poly(hydroxyacid) composite scaffolds for tissue reengineering, J. Biomed. Mater. Res. B Appl. Biomater. 105B (2017) 1667−1684; https://doi.org/10.1002/jbm.b.33674
  4. 4. A. R. Amini, C. T. Laurencin and S. P. Nukavarapu, Bone tissue engineering: recent advances and challenges, Crit. Rev. Biomed. Eng. 40 (2012) 363−408.
  5. 5. S. Bose, M. Roy and A. Bandyopadhyay, Recent advances in bone tissue engineering scaffolds, Trends Biotechnol. 30 (2012) 546−554; https://doi.org/10.1016/j.tibtech.2012.07.005
  6. 6. L. Wu, L. Wang, X. Wang and K. Xu, Synthesis, characterization and biocompatibility of novel bio-degradable star block copolymers based on poly[(R)-3-hydroxybutyrate] and poly(ε-caprolactone), Acta Biomater. 6 (2010) 1079−1089; https://doi.org/10.1016/j.actbio.2009.08.014
  7. 7. E. Masaeli, M. Morshed, P. Rasekhian, S. Karbasi, K. Karbalaie, F. Karamali, D. Abedi, S. Razavi, A. Jafarian-Dehkordi, M. H. Nasr-Esfahani and H. Baharvand, Does the tissue engineering architecture of Poly(3-hydroxybutyrate) scaffolds affect cell-material interactions? J. Biomed. Mater. Res. A 100A (2012) 1907−1918; https://doi.org/10.1002/jbm.a.34131
  8. 8. M. M. Reddy, S. Vivekanandhan, M. Misra, S. K. Bhatia and A. K. Mohanty, Biobased plastics and bionanocomposites: Current status and future opportunities, Prog. Polym. Sci. 38 (2013) 1653−1689; https://doi.org/10.1016/j.progpolymsci.2013.05.006
  9. 9. C. Peña, T. Castillo, A. Garcia, M. Millan and D. Segura, Biotechnological strategies to improve production of microbial poly(3-hydroxybutyrate): a review of recent research work, Microbial Biotechnol. 7 (2014) 278−293; https://doi.org/10.1111/1751-7915.12129
  10. 10. S. Centeno-Leija, G. Huerta-Beristain, M. Giles-Gomez, F. Bolivar, G. Gosset and A. Martinez, Improving poly-3-hydroxybutyrate production in Escherichia coli by combining the increase in the NADPH pool and acetyl-CoA availability, Antonie van Leeuwenhoek 105 (2014) 687−696; https://doi.org/10.1007/s10482-014-0124-5
  11. 11. A. M. Hayati, S. M. Hosseinalipour, H. R. Rezaie and M. A. Shokrgozar, Characterization of poly(3-hydroxybutyrate)/nano-hydroxyapatite composite scaffolds fabricated without the use of organic solvents for bone tissue engineering applications, Mater. Sci. Eng. C 32 (2012) 416−422; https://doi.org/10.1016/j.msec.2011.11.013
  12. 12. B. S. Kushwah, A. V. S. Kushwah and V. Singh, Towards understanding polyhydroxyalkanoates and their use, J. Polym. Res. 23 (2016) 153−166; https://doi.org/10.1007/s10965-016-0988-3
  13. 13. R. W. Lenz and R. H. Marchessault, Bacterial polyesters: Biosynthesis, biodegradable plastics and biotechnology, Biomacromolecules 6 (2005) 1−8; https://doi.org/10.1021/bm049700c
  14. 14. Y. Zhao, B. Zou, Z. Shi, Q. Wu and G. Q. Chen, The effect of 3-hydroxybutyrate on the in vitro differentiation of murine osteoblast MC3T3-E1 and in vivo bone formation in ovariectomized rats, Biomaterials 28 (2007) 3063−3073; https://doi.org/10.1016/j.biomaterials.2007.03.003
  15. 15. S. Cheng, G. Q. Chen, M. Leski, B. Zou, Y. Wang and Q. Wu, The effect of D,L-β-hydroxybutyric acid on cell death and proliferation, Biomaterials 27 (2006) 3758−3765; https://doi.org/10.1016/j.biomaterials.2006.02.046
  16. 16. C. J. Brigham and A. J. Sinskey, Applications of polyhydroxyalkanoates in the medical industry, Int. J. Biotechnol. Wellness Ind. (IJBWI) 1 (2012) 53−60
  17. 17. E. I. Shishatskaya and T. G. Volova, A comparative investigation of biodegradable polyhydroxyalkanoate films as matrices for in vitro cell cultures, J. Mater. Sci. Mater. Med. 15 (2004) 915−923; https://doi.org/10.1023/B:JMSM.0000036280.98763.c1
  18. 18. S. W. Hong, H. W. Hsu and M. T. Ye, Thermal properties and applications of low molecular weight polyhydroxybutyrate, J. Therm. Anal. Calorim. 111 (2013) 1243−1250; https://doi.org/10.1007/s10973-012-2503-3
  19. 19. I. Manavitehrani, A. Fathi, H. Badr, S. Daly, A. N. Shirazi and F. Dehghani, Biomedical applications of biodegradable polyesters, Polymers 8 (2016) Article ID 20 (32 pages); https://doi.org/10.3390/polym8010020
  20. 20. R. Y. Basha, S. Kumar and M. Doble, Design of biocomposite materials for bone tissue regeneration, Mater. Sci. Eng. C 57 (2015) 452−463; https://doi.org/10.1016/j.msec.2015.07.016
  21. 21. S. H. Lee and H. Shin, Matrices and scaffolds for delivery of bioactive molecules in bone and cartilage tissue engineering, Adv. Drug Deliv. Rev. 59 (2007) 339−359; https://doi.org/10.1016/j.addr.2007.03.016
  22. 22. D. W. Hutmacher, Scaffolds in tissue engineering bone and cartilage, Biomaterials 21 (2000) 2529−2543; https://doi.org/10.1016/S0142-9612(00)00121-6
  23. 23. P. P. Lopes, M. P. Garcia, M. H. Fernandes and M. H. V. Fernandes, Acrylic formulations containing bioactive and biodegradable filters to be used as bone cements: Properties and biocompatibility assessment, Mater. Sci. Eng. C 33 (2013) 1289−1299; https://doi.org/10.1016/j.msec.2012.12.028
  24. 24. M. Sadat-Shojai, M. T. Khorasani, A. Jamshidi and S. Irani, Nano-hydroxyapatite reinforced polyhydroxybutyrate composites: A comprehensive study on the structural and in vivo biological properties, Mater. Sci. Eng. C 33 (2013) 2776−2787; https://doi.org/10.1016/j.msec.2013.02.041
  25. 25. Y. Zhang, L. Hao, M. M. Savalani, R. A. Harris, L. Di Silvio and K. E. Tanner, In vitro biocompatibility of hydroxyapatite-reinforced polymeric composites manufactured by selective laser sintering, J. Biomed. Mater. Res. A 91A (2009) 1018−1027; https://doi.org/10.1002/jbm.a.32298
  26. 26. H. Zhou and J. Lee, Nanoscale hydroxyapatite particles for bone tissue engineering, Acta Biomater. 7 (2011) 2769−2781; https://doi.org/10.1016/j.actbio.2011.03.019
  27. 27. J. Michel, M. Penna, J. Kochen and H. Cheung, Recent advances in hydroxyapatite scaffolds containing mesenchymal stem cells, Stem Cell. Int. 2015 (2015) Article ID 305217 (13 pages); https://doi.org/10.1155/2015/305217
  28. 28. Y. W. Wang, Q. Wu, J. Chen and G. Q. Chen, Evaluation of three-dimensional scaffolds made of blends of hydroxyapatite and poly(3-hydroxybutyrate-co-3-hydroxyhexynoate) for bone reconstruction, Biomaterials 26 (2005) 899−904; https://doi.org/10.1016/j.biomaterials.2004.03.035
  29. 29. E. I. Shishatskaya, I. A. Khlusov and T. G. Volova, A hybrid PHB-hydroxyapatite composite for biomedical application: production, in vitro and in vivo investigation, J. Biomater. Sci. Polym. Ed. 17 (2006) 481−498.
  30. 30. J. Ramier, D. Grande, T. Bouderlique, O. Stoilova, N. Manolova, I. Rashkov, V. Langlois, P. Albanese and E. Renard, From design of bio-based biocomposite electrospun scaffolds to osteogenic differentiation of human mesenchymal stromal cells, J. Mater. Sci. Mater. Med. 25 (2014) 1563−1575; https://doi.org/10.1007/s10856-014-5174-8
  31. 31. A. Saadat, A.A. Behnamghader, S. Karbasi, D. Abedi, M. Soleimani and A. Shafiee, Comparison of acellular and cellular bioactivity of poly 3-hydroxybutyrate/hydroxyapatite nanocomposite and poly 3-hydroxybutyrate scaffolds, Biotechnol. Bioprocess Eng. 18 (2013) 587−593; https://doi.org/10.1007/s12257-012-0744-4
  32. 32. Z. Chen, Y. Song, J. Zhang, W. Liu, J. Cui, H. Li and F. Chen, Laminated electrospun nHA/PHB-composite scaffolds mimicking bone extracellular matrix for bone tissue engineering, Mater. Sci. Eng. C 72 (2017) 341−351; https://doi.org/10.1016/j.msec.2016.11.070
  33. 33. M. Sadat-Shojai, Electrospun polyhydroxybutyrate/hydroxyapatite nanohybrids: microstructure and bone cell response, J. Mater. Sci. Technol. 32 (2016) 1013−1020; https://doi.org/10.1016/j.jmst.2016.07.007
  34. 34. B. Pourmollaabbassi, S. Karbasi and B. Hashemibeni, Evaluate the growth and adhesion of osteo-blast cells on nanocomposite scaffold of hydroxyapatite/titania coated with poly hydroxybutyrate, Adv. Biomed. Res. 5 (2016) Article ID 156 (11 pages); https://doi.org/10.4103/2277-9175.188486
  35. 35. H. Hajiali, M. Hosseinalipour, S. Karbasi and M. A. Shokrgozar, The influence of bioglass nano-particles on the biodegradation and biocompatibility of poly(3-hydroxybutyrate) scaffolds, Int. J. Artif. Organs 35 (2012) 1015−1024; https://doi.org/10.5301/ijao.5000119
  36. 36. S. K. Misra, T. I. Ansari, S. P. Valappil, D. Mohn, S. E. Philip, W. J. Stark, I. Roy, J. C. Knowles, V. Salih and A. R. Boccaccini, Poly(3-hydroxybutyrate) multifunctional composite scaffolds for tissue engineering applications, Biomaterials 31 (2010) 2806−2815; https://doi.org/10.1016/j.biomaterials.2009.12.045
  37. 37. M. Meischel, J. Eichler, E. Martinelli, U. Karr, J. Weigel, G. Schmöller, E. K. Tschegg, S. Fischerauer, A. M. Weinberg and S. E. Stanzl-Tschegg, Adhesive strength of bone-implant interfaces and in-vivo degradation of PHB composites for load-bearing applications, J. Mech. Behav. Biomed. Mater. 53 (2016) 104−118; https://doi.org/10.1016/j.jmbbm.2015.08.004
  38. 38. M. Franceschini, A. Di Matteo, H. Bösebeck, H. Büchner and S. Vogt, Treatment of a chronic recurrent fistulized tibial osteomyelitis: administration of a novel antibiotic-loaded bone substitute combined with a pedicular muscle flap sealing, Eur. J. Orthop. Surg. Traumatol. 22 (2012) 245−249; https://doi.org/10.1007/s00590-012-0956-5
  39. 39. L. Medvecky, Microstructure and properties of polyhydroxybutyrate-chitosan-nanohydroxyapatite composite scaffolds, Sci. World J. 2012 (2012) Article ID 537973 (8 pages); https://doi.org/10.1100/2012/537973
  40. 40. H. Y. Tai, E. Fu, L.-P. Cheng and T.-M. Don, Fabrication of asymmetric membranes from polyhydroxybutyrate and biphasic calcium phosphate/chitosan for guided bone regeneration, J. Polym. Res. 21 (2014) Article ID 421 (12 pages); https://doi.org/10.1007/s10965-014-0421-8
  41. 41. M. Giretova, L. Medvecky, R. Stulajterova, T. Sopcak, J. Briancin and M. Tatarkova, Effect of enzymatic degradation of chitosan in polyhydroxybutyrate/chitosan/calcium phosphate composites on in vitro osteoblast response, J. Mater. Sci. Mater. Med. 27 (2016) Article ID 181; https://doi.org/10.1007/s10856-016-5801-7
  42. 42. Y. Ding, Q. Yao, W. Li, D. W. Schubert, A. R. Boccaccini and J. A. Roether, The evaluation of physical properties and in vitro cell behavior of PHB/PCL/sol-gel derived silica hybrid scaffolds and PHB/PCL/fumed silica composite scaffolds, Colloids Surf. B Biointerfaces 136 (2015) 93−98; https://doi.org/10.1016/j.colsurfb.2015.08.023
  43. 43. Y. Ding, W. Li, T. Müller, D. W. Schubert, A. R. Boccaccini, Q. Yao and J. A. Roether, Electrospun polyhydroxybutyrate/poly(ε-caprolactone)/58S sol−gel bioactive glass hybrid scaffolds with highly improved osteogenic potential for bone tissue engineering, Appl. Mater. Interfaces 8 (2016) 17098−17108; https://doi.org/10.1021/acsami.6b03997
  44. 44. C. Zhijiang, X. Yi, Y. Haizheng, J. Jia and Y. Liu, Poly(hydroxybutyrate)/cellulose acetate blend nano-fiber scaffolds: Preparation, characterization and cytocompatibility, Mater. Sci. Eng. C 58 (2016) 757−767; https://doi.org/10.1016/j.msec.2015.09.048
  45. 45. A. Venault, A. Subarja and Y. Chang, Zwitterionic polyhydroxybutyrate electrospun fibrous membranes with a compromise of bioinert control and tissue-cell growth, Langmuir 33 (2017) 2460−2471; https://doi.org/10.1021/asc.langmuir.6b04683
  46. 46. N. Goonoo, A. Bhaw-Luximon, P. Passanha, S. Esteves, H. Schönherr and D. Jhurry, Biomineralization potential and cellular response of PHB and PHBV blends with natural anionic polysaccharides, Mater. Sci. Eng. C 76 (2017) 13−24; https://doi.org/10.1016/j.msec2017.02.156
  47. 47. H. Li, H. Pan, C. Ning, G. Tan, J. Liao and G. Ni, Magnesium with micro-arc oxidation coating and polymeric membrane: an in vitro study on microenvironment, J. Mater. Sci. Mater. Med. 26 (2015) Article ID 147; https://doi.org/10.1007/s10856-015-5428-0
  48. 48. Y. W. Wang, Q. Wu and G. Q. Chen, Attachment, proliferation and differentiation of osteoblasts on random biopolyester poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) scaffolds, Biomaterials 25 (2004) 669−675; https://doi.org/10.1016/S0142-9612(03)00561-1
  49. 49. M. Sadat-Shojai, M. T. Khorasani and A. Jamshidi, A new strategy for fabrication of bone scaffolds using electrospun nano-Hap/PHB fibers and protein hydrogels, Chem. Eng. J. 289 (2016) 38−47; https://doi.org/10.1016/j.cej.2015.12.079
  50. 50. S. W. Peng, X. Y. Guo, G. G. Shang, J. Li, X. Y. Xu, M. L. You, P. Li and G. Q. Chen, An assessment of the risk of carcinogenicity associated with polyhydroxyalkanoates through an analysis of DNA aneuploid and telomerase activity, Biomaterials 32 (2011) 2546−2555; https://doi.org/10.1016/j.biomaterials.2010.12.051
  51. 51. A. Q. Ali, T. P. Kannan, A. Ahmad and Ab. R. Samsudin, In vitro genotoxicity tests for polyhydroxy-butyrate − A synthetic biomaterial, Toxicol. in Vitro 22 (2008) 57−67; https://doi.org/10.1016/j.tiv.2007.08.001
  52. 52. Y. Wang, X. L. Jiang, S. W. Peng, X. Y. Guo, G. G. Shang, J. C. Chen, Q. Wu and G. Q. Chen, Induced apoptosis of osteoblasts proliferating on polyhydroxyalkanoates, Biomaterials 34 (2013) 3737−3746; https://doi.org/10.1016/j.biomaterials.2013.01.088
  53. 53. C. Rentsch, B. Rentsch, A. Breier, A. Hofmann, S. Manthey, D. Scharnweber and H. Zwipp, Evaluation of the osteogenic potential and vascularization of 3D poly(3)hydroxybutyrate scaffolds subcutaneously implanted in nude rats, J. Biomed. Mater. Res. A 92A (2010) 185−195; https://doi.org/10.1002/jbm.a.32314
  54. 54. Z. Karahaliloğlu, B. Ercan, E. N. Taylor, S. Chung, E. B. Denkbas and T. J. Webster, Antibacterial nanostructured polyhydroxybutyrate membranes for guided bone regeneration, J. Biomed. Nanotechnol. 11 (2015) 2253−2263; https://doi.org/10.1166/jbn.2015.2106
  55. 55. I. Rozila, P. Azari, S. Munirah, W. K. Z. W. Safwani, S. N. Gan, A. G. N. Azurah, J. Jahendran, B. Pingguan-Murphy and K. H. Chua, Differential osteogenic potential of human adipose-derived stem cells co-cultured with human osteoblasts on polymeric microfiber scaffolds, J. Biomed. Mater. Res. A 104A (2016) 377−387; https://doi.org/10.1002/jbm.a.35573
  56. 56. P. Slepička, I. Michaljaničová, S. Rimpelová and V. Švorčík, Surface roughness in action – Cells in opposition, Mater. Sci. Eng. C 76 (2017) 818−826; https://doi.org/10.1016/j.msec.2017.03.061
  57. 57. H. E. Bernd, C. Kunze, T. Freier, K. Sternberg, S. Kramer, D. Behrend, F. Prall, M. Donat and B. Kramp, Poly(3-hydroxybutyrate) (PHB) patches for covering anterior skull base defects - an animal study with minipigs, Acta Otolaryngol. 129 (2009) 1010−1017; https://doi.org/10.1080/00016480802552493
  58. 58. T. Gredes, T. Gedrange, C. Hinüber, M. Gelinsky and C. Kunert-Keil, Histological and molecular-biological analyses of poly(3-hydroxybutyrate) (PHB) patches for enhancement of bone regeneration, Ann. Anat. 199 (2015) 36−42; https://doi.org/10.1016/j.aanat.2014.04.003
  59. 59. E. G. L. Alves, C. M. F. Rezende, R. Serakides, M. M. Pereira and I. R. Rosado, Orthopedic implant of a polyhydroxybutyrate (PHB) and hydroxyapatite composite in cats, J. Feline Med. Surg. 13 (2011) 546-552; https://doi.org/10.1016/j.jfms.2011.03.002
  60. 60. A. Celarek, T. Kraus, E. K. Tschegg, S. F. Fischerauer, S. Stanzl-Tschegg, P. J. Uggowitzer and A. M. Weinberg, PHB, crystalline and amorphous magnesium alloys: Promising candidates for bioresorbable osteosynthesis implants? Mater. Sci. Eng. C 32 (2012) 1503−1510; https://doi.org/10.1016/j.msec.2012.04.032
DOI: https://doi.org/10.2478/acph-2020-0007 | Journal eISSN: 1846-9558 | Journal ISSN: 1330-0075
Language: English
Page range: 1 - 15
Accepted on: Feb 26, 2019
Published on: Nov 1, 2019
Published by: Croatian Pharmaceutical Society
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year
Related subjects:

© 2019 Barbara Dariš, Željko Knez, published by Croatian Pharmaceutical Society
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.