Have a personal or library account? Click to login
Antiproliferative evaluation of various aminoquinoline derivatives Cover

Antiproliferative evaluation of various aminoquinoline derivatives

Open Access
|Oct 2019

References

  1. 1. T. I. Oprea and J. Mestres, Drug repurposing: Far beyond new targets for old drugs, AAPS J.14 (2012) 759–763.10.1208/s12248-012-9390-1
  2. 2. T. T. Ashburn and K. B. Thor, Drug repositioning: identifying and developing new uses for existing drugs, Nat. Rev. Drug Discov.3 (2004) 673–683; https://doi.org/10.1038/nrd146810.1038/nrd146815286734
  3. 3. V. R. Solomon and H. Lee, Chloroquine and its analogs: A new promise of an old drug for effective and safe cancer therapies, Eur. J. Pharmacol.625 (2009) 220–233; https://doi.org/10.1016/j.ejphar.2009.06.06310.1016/j.ejphar.2009.06.06319836374
  4. 4. R. Duffy, C. Wade and R. Chang, Discovery of anticancer drugs from antimalarial natural products: a MEDLINE literature review, Drug Discov. Today17 (2012) 942–953.; https://doi.org/10.1016/j.drudis.2012.03.01310.1016/j.drudis.2012.03.01322504324
  5. 5. T. Kimura, Y. Takabatake, A. Takahashi and Y. Isaka, Chloroquine in cancer therapy: A double-edged sword of autophagy, Cancer Res.73 (2013) 3–7; https://doi.org/10.1158/0008-547210.1158/0008-5472.CAN-12-2464
  6. 6. R. H. van Huijsduijnen, R. Kiplin Guy, K. Chibale, R. K. Haynes, I. Peitz, G. Kelter, M. A. Phillips, J. L. Vennerstrom, Y. Yuthavong and T. N. C. Wells, Anticancer properties of distinct antimalarial drug classes, PLoS One8 (2013) e82962.10.1371/journal.pone.0082962387700724391728
  7. 7. A. K. Abdel-Aziz, S. Shouman, E. El-Demerdash, M. Elgendy and A. B. Abdel-Naim, Chloroquine as a promising adjuvant chemotherapy together with sunitinib, Sci. Proc.1 (2014) Article ID e384; https://doi.org/10.14800/sp.38410.14800/sp.384
  8. 8. F. Liu, Y. Shang and S.-Z. Chen, Chloroquine potentiates the anti-cancer effect of lidamycin on non-small cell lung cancer cells in vitro, Acta Pharmacol. Sin. 35 (2014) 645–652; https://doi.org/10.1038/aps.2014.310.1038/aps.2014.3481403824727941
  9. 9. A. R. Choi, J. H. Kim, Y. H. Woo, H. S. Kim and S. Yoon, Anti-malarial drugs primaquine and chloroquine have different sensitization effects with anti-mitotic drugs in resistant cancer cells, Anticancer Res. 36 (2016) 1641–1648.10.21873/anticanres.11171
  10. 10. A. Ganguli, D. Choudhury, S. Datta, S. Bhattacharya and G. Chakrabarti, Inhibition of autophagy by chloroquine potentiates synergistically anti-cancer property of artemisinin by promoting ROS dependent apoptosis, Biochimie107 (2014) 338–349; https://doi.org/10.1016/j.biochi.2014.10.00110.1016/j.biochi.2014.10.00125308836
  11. 11. C. Verbaanderd, H. Maes, M. B. Schaaf, V. P. Sukhatme, P. Pantziarka, V. Sukhatme, P. Agostinis and G. Bouche, Repurposing drugs in oncology (ReDO) – chloroquine and hydroxychloroquine as anti-cancer agents, eCancer11 (2017) Article ID 781; https://doi.org/10.3332/ecancer.2017.78110.3332/ecancer.2017.781571803029225688
  12. 12. F. Wang, J. Tang, P. Li, S. Si, H. Yu, X. Yang, J. Tao, Q. Lv, M. Gu, H. Yang and Z. Wang, Chloroquine enhances the radiosensitivity of bladder cancer cells by inhibiting autophagy and activating apoptosis, Cell. Physiol. Biochem.45 (2018) 54–66; https://doi.org/10.1159/00048622210.1159/00048622229316551
  13. 13. L. Liu, C. Han, H. Yu, W. Zhu, H. Cui, L. Zheng, C. Zhang and L. Yue, Chloroquine inhibits cell growth in human A549 lung cancer cells by blocking autophagy and inducing mitochondrial-mediated apoptosis, Oncol. Rep.39 (2018) 2807–2816.
  14. 14. A. Kamal A. Aziz, S. Shouman, E. El-Demerdash, M. Elgendy and A. B. Abdel-Naim, Chloroquine synergizes sunitinib cytotoxicity via modulating autophagic, apoptotic and angiogenic machineries, Chem. Biol. Interact.217 (2014) 28–40; https://doi.org/10.1016/j.cbi.2014.04.00710.1016/j.cbi.2014.04.00724751611
  15. 15. G. W. Soo, J. H. Law, E. Kan, S. Y. Tan, W. Y. Lim, G. Chay, N. I. Bukhari and I. Segarra, Differential effects of ketoconazole and primaquine on the pharmacokinetics and tissue distribution of imatinib in mice, Anticancer Drugs21 (2010) 695–703.10.1097/CAD.0b013e32833c93b3
  16. 16. Y. K. Wong, C. Xu, K. A. Kalesh, Y. He, Q. Lin, W. S. F. Wong, H. M. Shen and J. Wang, Artemisinin as an anticancer drug: Recent advances in target profiling and mechanisms of action, Med. Res. Rev.37 (2017) 1492–1517.10.1002/med.21446
  17. 17. https://clinicaltrials.gov/ct2/home (last access May 26, 2019)
  18. 18. https://en.wikipedia.org/wiki/WHO_Model_List_of_Essential_Medicines (last access May 27, 2019)
  19. 19. N. Vale, R. Moreira and P. Gomes, Primaquine revisited six decades after its discovery, Eur. J. Med. Chem.44 (2009) 937–953; https://doi.org/10.1016/j.ejmech.2008.08.01110.1016/j.ejmech.2008.08.01118930565
  20. 20. P. M. Njaria, J. Okombo, N. M. Njuguna and K. Chibale, Chloroquine-containing compounds: a patent review (2010 – 2014), Expert Opin. Therap. Patents25 (2015) 1003–1024; https://doi.org/10.1517/13543776.2015.105079110.1517/13543776.2015.1050791710371026013494
  21. 21. S-J. Yeo, D-X. Liu, H-S. Kim and H. Park, Anti-malarial effect of novel chloroquine derivatives as agents for the treatment of malaria, Malaria J.16 (2017) 80; https://doi.org/10.1186/s12936-017-1725-z10.1186/s12936-017-1725-z531621328212631
  22. 22. M. A. Avery, D. J. Weldon and K. M. Muraleedharan, Advances in the Discovery of New Antimalarials, in Comprehensive Medicinal Chemistry II (Eds. J. B. Taylor and D. J. Triggle), Vol. 7, Elsevier Ltd., 2007, pp. 765–814; https://doi.org/10.1016/B0-08-045044-X/00227-310.1016/B0-08-045044-X/00227-3
  23. 23. K. Pavić, Z. Rajić, Z. Mlinarić, L. Uzelac, M. Kralj and B. Zorc, Chloroquine urea derivatives: synthesis and antitumor activity in vitro, Acta Pharm. 68 (2018) 471–483.10.2478/acph-2018-0039
  24. 24. M. Beus, L. Persoons, D. Schols, L. Uzelac, M. Kralj, Z. Rajić and B. Zorc, Cytotoxicity studies of primaquine and chloroquine fumardiamides, 6th Croatian Congress on Pharmacy with International Participation, Book of Abstract, PO-16, Dubrovnik, April 4–6, 2019
  25. 25. M. Beus, D. Fontinha, J. Held, Z. Rajić, M. Prudêncio and B. Zorc, Synthesis and antiplasmodial evaluation of novel mefloquine-based fumardiamides, Acta Pharm. 69 (2019) 233–248; https://doi.org/10.2478/acph-2019-001910.2478/acph-2019-001931259728
  26. 26. G. Džimbeg, B. Zorc, M. Kralj, K. Ester, K. Pavelić, J. Balzarini, E. De Clercq and M. Mintas, The novel primaquine derivatives of N-alkyl, cycloalkyl or aryl urea: synthesis, cytostatic and antiviral activity evaluations, Eur. J. Med. Chem.43 (2008) 1180–1187; https://doi.org/10.1016/j.ejmech.2007.09.00110.1016/j.ejmech.2007.09.00117961851
  27. 27. M. Šimunović, I. Perković, B. Zorc, K. Ester, M. Kralj, D. Hadjipavlou-Litina and E. Pontiki, Urea and carbamate derivatives of primaquine: synthesis, cytostatic and antioxidant activities, Bioorg. Med. Chem.17 (2009) 5605–5613; https://doi.org/10.1016/j.bmc.2009.06.03010.1016/j.bmc.2009.06.03019581098
  28. 28. I. Perković, S. Tršinar, J. Žanetić, M. Kralj, I. Martin-Kleiner, J. Balzarini, D. Hadjipavlou-Litina and A. M. Katsori, Novel 1-acyl-4-substituted semicarbazide derivatives of primaquine – synthesis, cytostatic, antiviral and antioxidative studies, J. Enzyme Inhib. Med. Chem.28 (2013) 601–610; https://doi.org/10.3109/14756366.2012.66336610.3109/14756366.2012.66336622380782
  29. 29. K. Pavić, I. Perković, M. Cindrić, M. Pranjić, I. Martin-Kleiner, M. Kralj, D. Schols, D. Hadjipavlou-Litina, A.-M. Katsori and B. Zorc, Novel semicarbazides and ureas of primaquine with bulky aryl or hydroxyalkyl substituents: Synthesis, cytostatic and antioxidative activity, Eur. J. Med. Chem.86 (2014) 502–514; https://doi.org/10.1016/j.ejmech.2014.09.01310.1016/j.ejmech.2014.09.01325203780
  30. 30. I. Perković, M. Antunović, I. Marijanović, K. Pavić, K. Ester, M. Kralj, J. Vlainić, I. Kosalec, D. Schols, D. Hadjipavlou-Litina, E. Pontiki and B. Zorc, Novel urea and bis-urea primaquine derivatives with hydroxyphenyl and halogenphenyl substituents: synthesis and biological evaluation, Eur. J. Med. Chem.124 (2016) 622–636; https://doi.org/10.1016/j.ejmech.2016.08.02110.1016/j.ejmech.2016.08.02127614409
  31. 31. K. Pavić, I. Perković, P. Gilja, F. Kozlina, K. Ester, M. Kralj, D. Schols, D. Hadjipavlou-Litina, E. Pontiki and B. Zorc, Design, synthesis and biological evaluation of novel primaquine-cinnamic acid conjugates of amide and acylsemicarbazide type, Molecules21 (2016) 1629–1653; https://doi.org/10.3390/molecules2112162910.3390/molecules21121629627368727916811
  32. 32. K. Pavić, I. Perković, Š. Pospíšilová, M. Machado, D. Fontinha, M. Prudêncio, J. Jampilek, A. Coffey, L. Endersen, H. Rimac and B. Zorc, Primaquine hybrids as promising antimycobacterial and antimalarial agents, Eur. J. Med. Chem.143 (2018) 769–779; https://doi.org/10.1016/j.ejmech.2017.11.08310.1016/j.ejmech.2017.11.08329220797
  33. 33. J. Vlainić, I. Kosalec, K. Pavić, D. Hadjipavlou-Litina, E. Pontiki and B. Zorc, Insights into biological activity of ureidoamides with primaquine and amino acid moieties, J. Enzyme Inhib. Med. Chem.33 (2018) 376–382; https://doi.org/10.1080/14756366.2017.142306710.1080/14756366.2017.1423067602103529363364
  34. 34. J. Levatić, K. Pavić, I. Perković, L. Uzelac, K. Ester, M. Kralj, M. Kaiser, M. Rottmann, F. Supek and B. Zorc, Machine learning prioritizes synthesis of primaquine ureidoamides with high antimalarial activity and attenuated cytotoxicity, Eur. J. Med. Chem.146 (2018) 651–667; https://doi.org/10.1016/j.ejmech.2018.01.06210.1016/j.ejmech.2018.01.06229407988
  35. 35. M. Beus, Z. Rajić, D. Maysinger, Z. Mlinarić, M. Antunović, I. Marijanović, D. Fontinha, M. Prudêncio, J. Held, S. Olgen and B. Zorc, SAHAquines, novel hybrids based on SAHA and primaquine motifs, as potential anticancer and antiplasmodial agents, ChemistryOpen7 (2018) 624–638; https://doi.org/10.1002/open.20180011710.1002/open.201800117610443330151334
  36. 36. Z. Rajić, M. Beus, H. Michnova, J. Vlainić, L. Persoons, I. Kosalec, J. Jampilek, D. Schols, T. Keser and B. Zorc, Asymmetric primaquine and halogenaniline fumardiamides as novel biologically active Michael acceptors, Molecules23 (2018) 1724; https://doi.org/10.3390/molecules2307172410.3390/molecules23071724610058230011922
  37. 37. I. Zhang, M. Beus, U. Stochaj, P. U. Le, B. Zorc, Z. Rajić, K. Petrecca and D. Maysinger, Inhibition of glioblastoma cell proliferation, invasion, and mechanism of action of a novel hydroxamic acid hybrid molecule, Cell Death Discov. 5 (2019) 41; https://doi.org/10.1038/s41420-018-0103-010.1038/s41420-018-0103-0615828830302275
  38. 38. K. Pavić, Z. Rajić, H. Michnová, J. Jampílek, I. Perković and B. Zorc, Second generation of primaquine ureas and bis-ureas as potential antimycobacterial agents, Mol. Diver. (2018); https://doi.org/10.1007/s11030-018-9899-z10.1007/s11030-018-9899-z30523579
  39. 39. M. E. Flanagan, J. A. Abramite, D. P. Anderson, A. Aulabaugh, U. P. Dahal, A. M. Gilbert, C. Li, J. Montgomery, S. R. Oppenheimer, T. Ryder, B. P. Schuff, D. P. Uccello, G. S. Walker, Y. Wu, M. F. Brown, J. M. Chen, M. M. Hayward, M. C. Noe, R. S. Obach, L. Philippe, V. Shanmugasundaram, M. J. Shapiro, J. Starr, J. Stroh and Y. Che, Chemical and computational methods for the characterization of covalent reactive groups for the prospective design of irreversible inhibitors, J. Med. Chem.57 (2014) 10072–10079; https://doi.org/10.1021/jm501412a10.1021/jm501412a25375838
  40. 40. I. Fernandes, N. Vale, V. de Freitas, R. Moreira, N. Mateus and P. Gomes, Anti-tumoral activity of imidazoquines, a new class of antimalarials derived from primaquine, Bioorg. Med. Chem. Lett.19 (2009) 6914–6917; https://doi.org/10.1016/j.bmcl.2009.10.08110.1016/j.bmcl.2009.10.08119896373
  41. 41. T. Rossi, A. Coppi, E. Bruni, A. Ruberto, S. Santachiara and G. A. Baggio, Effects of anti-malarial drugs on MCF-7 and Vero cell replication, Anticancer Res. 27 (2007) 2555–2559.
  42. 42. A. R. Martirosyan, R. Rahim-Bata, A. B. Freeman, C. D. Clarke, R. L. Howard and J. S. Strobl, Differentiation-inducing quinolines as experimental breast cancer agents in the MCF-7 human breast cancer cell model, Biochem. Pharmacol. 68 (2004) 1729–1738.10.1016/j.bcp.2004.05.00315450938
DOI: https://doi.org/10.2478/acph-2019-0048 | Journal eISSN: 1846-9558 | Journal ISSN: 1330-0075
Language: English
Page range: 661 - 672
Accepted on: Jun 24, 2019
|
Published on: Oct 21, 2019
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year
Related subjects:

© 2019 Branka Zorc, Zrinka Rajić, Ivana Perković, published by Croatian Pharmaceutical Society
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.