Have a personal or library account? Click to login
Antiproliferative and genotoxic potential of xanthen-3-one derivatives Cover

References

  1. 1. S. S. Liou, W. L. Sheih, T. H. Cheng, S. J. Won and C. N. Lin, γ-Pyrone compounds as potential anticancer drugs, J. Pharm. Parmacol.45 (1993) 791–794; https://doi.org/10.1111/j.2042-7158.1993.tb05686.x10.1111/j.2042-7158.1993.tb05686.x7903365
  2. 2. K. Muharrem, D. Ersin and B. Hatice, Synthesis, characterization and antimicrobial activity of novel xanthene sulfonamide and carboxamide derivatives, J. Enzyme Inhib. Med. Chem.28 (2013) 885–893; https://doi.org/10.3109/14756366.2012.69208710.3109/14756366.2012.69208722803669
  3. 3. B. C. Baguley and L. M. Ching, Immunomodulatory actions of xanthenone anticancer agents, BioDrugs8 (1997) 119–127; https://doi.org/10.2165/00063030-199708020-0000510.2165/00063030-199708020-0000518020500
  4. 4. A. E. Hay, M. C. Aumond, S. Mallet, V. Dumontet, M. Litaudon, D. Rondeau and P. Richomme, Antioxidant xanthones from Garcinia vieillardii, J. Nat. Prod.67 (2004) 707–709; https://doi.org/10.1021/np030497110.1021/np030497115104511
  5. 5. Z. Karimi-Jaberi and M. M. Hashemi, One step synthesis of 14-alkyl-or aryl-14H-dibenzo [a,j] xanthenes using sodium hydrogen sulfate as catalyst, Monatsh. Chem.139 (2008) 605–608; https://doi.org/10.1007/s00706-007-0786-z10.1007/s00706-007-0786-z
  6. 6. S. Laphookhieo, J. K. Syers, R. Kiattansakul and K. Chantrapromma, Cytotoxic and antimalarial prenylated xanthones from Cratoxylum cochinchinense, Chem. Pharm. Bull.54 (2006) 745–747; https://doi.org/10.1248/cpb.54.74510.1248/cpb.54.74516651783
  7. 7. Q. B. Han, N. Y. Yang, H. L. Tian, C. F. Qiao, J. Z. Song, D. C. Chang, S. L. Chen, K. Q. Luo and H. X. Xu, Xanthones with growth inhibition against HeLa cells from Garcinia xipshuanbannaensis, Phytochemistry69 (2008) 2187–2192; https://doi.org/10.1016/j.phytochem.2008.05.01910.1016/j.phytochem.2008.05.01918614188
  8. 8. S. L. Niu, Z. L. Li, F. Ji, G. Y. Liu, N. Zhao, X. Q. Liu, Y. K. Jing and H. M. Hua, Xanthones from the stem bark of Garcinia bracteata with growth inhibitory effects against HL-60 cells, Phytochemistry77 (2012) 280–286; https://doi.org/10.1016/j.phytochem.2012.01.01010.1016/j.phytochem.2012.01.01022325589
  9. 9. A. Nersesyan, E. Perrone, P. Roggieri and C. Bolognesi, Genotoxic action of cycloplatam, a new platinum antitumor drug, on mammalian cells in vivo and in vitro, Chemotherapy49 (2003) 132–137; https://doi.org/10.1159/00007061910.1159/00007061912815206
  10. 10. G. P. Machado, J. I. González Borroto, N. Castañedo, A. Creus and R. Marcos, In vitro genotoxicity testing of the furylethylene derivative UC-245 in human cells, Mutagenesis 19 (2004) 75–80; https://doi.org/10.1093/mutage/geg03910.1093/mutage/geg03914681316
  11. 11. A. K. Nersesyan, G. S. Melikyan and H. Stopper, The study of genotoxicity of two newly synthesized pyrrolinone derivatives on L5178Y mouse lymphoma and bone marrow cells, Exp. Oncol.25 (2003) 176–179.
  12. 12. F. Karaer, Environmental pollution and carcinogenic risk, J. Environ. Pathol., Toxicol. Oncol.15 (1996) 105–113.
  13. 13. M. S. Legator and W. W. Au, Application of integrated genetic monitoring: the optimal approach for detecting environmental carcinogens, Environ. Health Perspect.102 (1994) 125–132; https://doi.org/10.1289/ehp.94102s912510.1289/ehp.94102s912515667787698074
  14. 14. M. Fenech, Cytokinesis-block micronucleus cytome assay, Nat. Protoc.2 (2007) 1084; https://doi.org/10.1038/nprot.2007.7710.1038/nprot.2007.7717546000
  15. 15. L. Applova, E. Veljović, S. Muratović, J. Karličkova, K. Macakova, D. Završnik, L. Saso, K. Durić and P. Mladenka, 9-(4’-Dimethylaminophenyl)-2,6,7-trihydroxy-xanthene-3-one is a Potentially Novel Antiplatelet Drug which Antagonizes the Effect of Thromboxane A2, Med. Chem.14 (2018) 1–10; https://doi.org/10.2174/157340641366617101010253510.2174/157340641366617101010253529032760
  16. 16. E. Veljović, S. Špirtović-Halilović, S. Muratović, M. Salihović, I. Novaković, A. Osmanović and D. Završnik, Antimicrobial Activity and Docking Study of Synthesized Xanthen-3-one Derivatives, Res. J. Pharm. Biol. Chem. Sci.9 (2018) 777–783.
  17. 17. H. Marona, N. Szkaradek, E. Karczewska, D. Trojanowska, A. Budak, P. Bober, W. Przepiorka, M. Cegla and E. Szneler, Antifungal and Antibacterial Activity of the Newly Synthesized 2-Xanthone Derivatives, Arch. Pharm.342 (2009) 9–18; https://doi.org/10.1002/ardp.20080008910.1002/ardp.20080008919051197
  18. 18. S. Gobbi, A. Rampa, A. Bisi, F. Belluti, P. Valenti, A. Caputo, A. Zampiron and M. Carrara, Synthesis and antitumor activity of new derivatives of xanthen-9-one-4-acetic acid, J. Med. Chem.45 (2002) 4931–4939; https://doi.org/10.1021/jm020929p10.1021/jm020929p12383019
  19. 19. X. Z. Wang, J. H. Yao, G. B. Jiang, J. Wang, H. L. Huang and Y. L. Liu, Synthesis, characterization, cytotoxicity, apoptosis and cell cycle arrest of dibenzoxanthenes derivatives, Spectrochim. Acta, Part A133 (2014) 559–567; https://doi.org/10.1016/j.saa.2014.05.05410.1016/j.saa.2014.05.05424992915
  20. 20. E. Veljović, S. Špirtović-Halilović, S. Muratović, L. Valek Žulj, S. Roca, S. Trifunović, A. Osmanović and D. Završnik, 9-Aryl Substituted Hydroxylated Xanthen-3-ones: Synthesis, Structure and Antioxidant Potency Evaluation, Croat. Chem. Acta88 (2015) 121–127; https://doi.org/10.5562/cca259510.5562/cca2595
  21. 21. S. Petra, G. Klaus and R. W. Siegfries, Reliable synthesis of 9-aryl-substituted 2,6,7-trihydroxyxanthen-3-ones, Synthesis14 (2008) 2211–2216; https://doi.org/10.1055/s-2008-107844710.1055/s-2008-1078447
  22. 22. T. Gazivoda, S. Raić-Malić, S. Krištafor, D. Makuc, J. Plavec, S. Bratulić, S. Kraljević Pavelić, K. Pavelić, L. Naesens, G. Andrei, R. Snoeck, J. Balzarini and M. Mintas, Synthesis, cytostatic and anti-HIV evaluations of the new unsaturated acyclic C-5 pyrimidine nucleoside analogues, Bioorg. Med. Chem.16 (2008) 5624–5634; https://doi.org/10.1016/j.bmc.2008.03.07410.1016/j.bmc.2008.03.074712749118424155
  23. 23. G. M. Morris, R. Huey, W. Lindstrom, M. F. Sanner, R. K. Belew, D. S. Goodsell and A. J. Olson, AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility J. Comput. Chem.30 (2009) 2785–2791; https://doi.org/10.1002/jcc.2125610.1002/jcc.21256276063819399780
  24. 24. M. A. Lill and M. L. Danielson, Computer-aided drug design platform using PyMOL, J. Comput.-Aided Mol. Des.25 (2011) 13–19; https://doi.org/10.1007/s10822-010-9395-810.1007/s10822-010-9395-8
  25. 25. M. Fenech, The in vitro micronucleus technique, Mutat. Res., Fundam. Mol. Mech. Mutagen.455 (2000) 81–95; https://doi.org/10.1016/S0027-5107(00)00065-810.1016/S0027-5107(00)00065-8
  26. 26. M. Fenech, W. P. Chang, M. Kirsch-Volders, N. Holland, S. Bonassi and E. Zeiger, HUMN project: detailed description of the scoring criteria for the cytokinesis-block micronucleus assay using isolated human lymphocyte cultures, Mutat. Res., Genet. Toxicol. Environ. Mutagen.534 (2003) 65–75; https://doi.org/10.1016/S1383-5718(02)00249-810.1016/S1383-5718(02)00249-8
  27. 27. O. Hammer, D. A. T. Harper and P. D. Ryan, PAST-Palaeontological statistics. www.uv.es/~pardomv/pe/2001_1/past/pastprog/past.pdf, acessado em, 25 (2001) 2009.
  28. 28. J. Azizian, M. K. Mohammadi, O. Firuzi, N. Razzaghi-asl and R. Miri, Synthesis, biological activity and docking study of some new isatin Schiff base derivatives, Med. Chem. Res.21 (2012) 3730–3740; https://doi.org/10.1007/s00044-011-9896-610.1007/s00044-011-9896-6
  29. 29. E. Gordian, E. Welsh and T. Muñoz-Antonia, Alvespimycin (17-DMAG) blocks TGFβ-induced EMT and migration in A549 lung cancer cells, Cancer Res.74 (2014) 1916–1930; https://doi.org/10.1158/1538-7445.AM2014-105010.1158/1538-7445.AM2014-1050
  30. 30. P. Xia, F. F. Mou and L. W. Wang, Predictive Role of Computer Simulation in Assessing Signaling Pathways of Crizotinib-treated A549 Lung Cancer Cells, Asian Pac. J. Cancer Prev.13 (2012) 3119–3121; https://doi.org/10.7314/APJCP.2012.13.7.311910.7314/APJCP.2012.13.7.3119
  31. 31. A. F. Eweas, Q. M. A. Abdullah and E. S. I. Hassan, Design, synthesis, molecular docking of new thiopyrimidine-5-carbonitrile derivatives and their cytotoxic activity against HepG2 cell line, J. Appl. Pharm. Sci.4 (2014) 102–111; https://doi.org/10.7324/JAPS.2014.4121810.7324/JAPS.2014.41218
  32. 32. R. J. Coffey, G. D. Shipley and H. L. Moses, Production of transforming growth factors by human colon cancer lines, Cancer Res.46 (1986) 1164–1169.
  33. 33. F. M. Drumond Chequer, V. P. Venâncio, M. L. Bianchi abd L. M. Antunes, Genotoxic and mutagenic effects of erythrosine B, a xanthene food dye, on HepG2 cells, Food. Chem. Toxicol.50 (2012) 3447–3451; https://doi.org/10.1016/j.fct.2012.07.04210.1016/j.fct.2012.07.04222847138
  34. 34. A. Eisentraeger, C. Brinkmann, H. Hollert, A. Sagner, A. Tiehm and J. Neuwoehner, Heterocyclic compounds: toxic effects using algae, daphnids, and the Salmonella/microsome test taking methodical quantitative aspects into account, Environ. Toxicol. Chem.27 (2008) 1590–1596; https://doi.org/10.1897/07-201.110.1897/07-201.1
DOI: https://doi.org/10.2478/acph-2019-0044 | Journal eISSN: 1846-9558 | Journal ISSN: 1330-0075
Language: English
Page range: 683 - 694
Accepted on: May 10, 2019
Published on: Oct 21, 2019
Published by: Croatian Pharmaceutical Society
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year
Related subjects:

© 2019 Elma Veljović, Selma Špirtović-Halilović, Samija Muratović, Amar Osmanović, Sanin Haverić, Anja Haverić, Maida Hadžić, Mirsada Salihović, Maja Malenica, Aida Šapčanin, Davorka Završnik, published by Croatian Pharmaceutical Society
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.