Have a personal or library account? Click to login
Screening of flavonoid aglycons’ metabolism mediated by the human liver cytochromes P450 Cover

Screening of flavonoid aglycons’ metabolism mediated by the human liver cytochromes P450

Open Access
|Oct 2019

References

  1. 1. J. A. Yáñez, P. K. Andrews and N. M. Davies, Methods of analysis and separation of chiral flavonoids, J. Chromatogr. B848 (2007) 159–181; https://doi.org/10.1016/j.jchromb.2006.10.05210.1016/j.jchromb.2006.10.052
  2. 2. J. Xiao and P. Högger, Metabolism of dietary flavonoids in liver microsomes, Curr. Drug Metab.14 (2013) 381–391; https://doi.org/10.2174/138920021131404000310.2174/1389200211314040003
  3. 3. B. H. Havsteen, The biochemistry and medical significance of the flavonoids, Pharmacol. Therapeut. 96 (2002) 67–202; https://doi.org/10.1016/S0163-7258(02)00298-X10.1016/S0163-7258(02)00298-X
  4. 4. J. Viskupičová, M. Ondrejovič and E. Šturdík, Bioavailability and metabolism of flavonoids, J. Food Nutr. Res.47 (2008) 151–162.
  5. 5. F. P. Guengerich, Cytochrome P450 and chemical toxicology, Chem. Res. Toxicol.21 (2008) 70–83; https://doi.org/10.1021/tx700079z10.1021/tx700079z
  6. 6. V. P. Androutsopoulos, A. Papakyriakou, D. Vourloumis and D. A. Spandidos, Comparative CYP1A1 and CYP1B1 substrate and inhibitor profile of dietary flavonoids, Bioorg. Med. Chem.19 (2011) 2842–2849; https://doi.org/10.1016/j.bmc.2011.03.04210.1016/j.bmc.2011.03.042
  7. 7. S. E. Nielsen, V. Breinholt, U. Justesen, C. Cornett and L. O. Dragsted, In vitro biotransformation of flavonoids by rat liver microsomes, Xenobiotica28 (1998) 389–401; https://doi.org/10.1080/00498259823949810.1080/004982598239498
  8. 8. V. M. Breinholt, E. A. Offord, C. Brouwer, S. E. Nielsen, K. Brøsen and T. Friedberg, In vitro investigation of cytochrome P450-mediated metabolism of dietary flavonoids, Food Chem. Toxicol.40 (2002) 609–616; https://doi.org/10.1016/S0278-6915(01)00125-910.1016/S0278-6915(01)00125-9
  9. 9. A. Gradolatto, M. C. Canivenc-Lavier, J. P. Basly, M. H. Siess and C. Teyssier, Metabolism of apigenin by rat liver phase I and phase II enzymes and by isolated perfused rat liver, Drug Metab. Dispos.32 (2004) 58–65; https://doi.org/10.1124/dmd.32.1.5810.1124/dmd.32.1.58
  10. 10. V. Androutsopoulos, N. Wilsher, R. R. J. Arroo and G. A. Potter, Bioactivation of the phytoestrogen diosmetin by CYP1 cytochromes P450, Cancer Lett.274 (2009) 54–60; https://doi.org/10.1016/j.canlet.2008.08.03210.1016/j.canlet.2008.08.032
  11. 11. S. E. Nielsen, V. Breinholt, C. Cornett and L. O. Dragsted, Biotransformation of the citrus flavone tangeretin in rats. Identification of metabolites with intact flavane nucleus, Food Chem. Toxicol.38 (2000) 739–746; https://doi.org/10.1016/S0278-6915(00)00072-710.1016/S0278-6915(00)00072-7
  12. 12. V. M. Breinholt, S. E. Rasmussen, K. Brøsen and T. H. Friedberg, In vitro metabolism of genistein and tangeretin by human and murine cytochrome P450s, Pharmacol. Toxicol.93 (2003) 14–22; https://doi.org/10.1034/j.1600-0773.2003.930102.x10.1034/j.1600-0773.2003.930102.x
  13. 13. Y. Otake and T. Walle, Oxidation of the flavonoids galangin and kaempferide by human liver microsomes and CYP1A1, CYP1A2 and CYP2C9, Drug Metab. Dispos.30 (2002) 103–105; https://doi.org/10.1124/dmd.30.2.10310.1124/dmd.30.2.103
  14. 14. S. E. Kulling, D. M. Honig and M. Metzler, Oxidative metabolism of the soy isoflavones daidzein and genistein in humans in vitro and in vivo, J. Agric. Food Chem. 49 (2001) 3024–3033; https://doi.org/10.1021/jf001269510.1021/jf0012695
  15. 15. S. E. Kulling, D. M. Honig, T. J. Simat and M. Metzler, Oxidative in vitro metabolism of the soy phytoestrogens daidzein and genistein, J. Agric. Food Chem.48 (2000) 4963–4972; https://doi.org/10.1021/jf000524i10.1021/jf000524i
  16. 16. S. E. Kulling, L. Lehmann and M. Metzler, Oxidative metabolism and genotoxic potential of major isoflavone phytoestrogens, J. Chromatogr. B777 (2002) 211–218; https://doi.org/10.1016/S1570-0232(02)00215-510.1016/S1570-0232(02)00215-5
  17. 17. M. Hu, K. Krausz, J. Chen, X. Ge, J. Li, H. L. Gelboin and F. J. Gonzalez, Identification of CYP1A2 as the main isoform for the phase I hydroxylated metabolism of genistein and a prodrug converting enzyme of methylated isoflavones, Drug Metab. Dispos.31 (2003) 924–931; https://doi.org/10.1124/dmd.31.7.92410.1124/dmd.31.7.924
  18. 18. J. Bursztyka, E. Perdu, J. Tulliez, L. Debrauwer, G. Delous, C. Canlet, G. De Sousa, R. Rahmani, E. Benfenati and J. P. Cravedi, Comparison of genistein metabolism in rats and humans using liver microsomes and hepatocytes, Food Chem. Toxicol.46 (2008) 939–948; https://doi.org/10.1016/j.fct.2007.10.02310.1016/j.fct.2007.10.023
  19. 19. K. M. Atherton, E. Mutch and D. Ford, Metabolism of the soyabean isoflavone daidzein by CYP1A2 and the extra-hepatic CYPs 1A1 and 1B1 affects biological activity, Biochem. Pharmacol.72 (2006) 624–631; https://doi.org/10.1016/j.bcp.2006.05.01510.1016/j.bcp.2006.05.015
  20. 20. H. Doostdar, M. D. Burke and R. T. Mayer, Bioflavonoids: selective substrates and inhibitors for cytochrome P450 CYP1A and CYP1B1, Toxicology144 (2000) 31–38; https://doi.org/10.1016/S0300-483X(99)00215-210.1016/S0300-483X(99)00215-2
  21. 21. J. M. Young, W. Xiaodong and E. M. Marilyn, Dietary flavonoids: Effects on xenobiotic and carcinogen metabolism, Toxicol. In Vitro20 (2006) 187–210; https://doi.org/10.1016/j.tiv.2005.06.04810.1016/j.tiv.2005.06.04816289744
  22. 22. Y. Kimura, H. Ito, R. Ohnishi and T. Hatano, Inhibitory effects of polyphenols on human cytochrome P450 3A4 and 2C9 activity, Food Chem. Toxicol.48 (2010) 429–435; https://doi.org/10.1016/j.fct.2009.10.04110.1016/j.fct.2009.10.04119883715
  23. 23. M. Bojić, C. A. Sedgeman, L. D. Nagy and F. P. Guengerich, Aromatic hydroxylation of salicylic acid and aspirin by human cytochromes P450, Eur. J. Pharm. Sci.73 (2015) 49–56; https://doi.org/10.1016/j.ejps.2015.03.01510.1016/j.ejps.2015.03.015441492025840124
  24. 24. M. Medić-Šarić, V. Rastija and M. Bojić, Recent advances in the application of high performance liquid chromatography in the analysis of polyphenols in wine and propolis, J. AOAC Int.94 (2011) 32–42.10.1093/jaoac/94.1.32
  25. 25. M. Barbarić, K. Mišković, M. Bojić, M. Baus Lončar, A. Smolčić-Bubalo, Ž. Debeljak and M. Medić-Šarić, Chemical composition of the ethanolic propolis extracts and its effect on HeLa cells, J. Ethnopharmacol.135 (2011) 772–778; https://doi.org/10.1016/j.jep.2011.04.01510.1016/j.jep.2011.04.01521515353
  26. 26. D. Tsimogiannis, M. Samiotaki, G. Panayotou and V. Oreopoulou, Characterization of flavonoid subgroups and hydroxy substitution by HPLC-MS/MS, Molecules12 (2007) 593–606; https://doi.org/10.3390/1203059310.3390/12030593614935317851414
  27. 27. F. Cuyckens and M. Claeys, Mass spectrometry in the structural analysis of flavonoids, J. Mass Spectrom.39 (2004) 1–15; https://doi.org/10.1002/jms.58510.1002/jms.58514760608
  28. 28. F. P. Guengerich, Human Cytochrome P450 Enzymes, in Cytochrome P450: Structure, Mechanism, and Biochemistry (Ed. P. R. Ortiz de Montellano), 4th ed., Springer Int. Publ. Switzerland, Cambridge 2015; https://doi.org/10.1007/978-3-319-12108-6_910.1007/978-3-319-12108-6_9
  29. 29. V. P. Androutsopoulos, S. Mahale, R. R. J. Arroo and G. Potter, Anticancer effects of the flavonoid diosmetin on cell cycle progression and proliferation of MDA-MB 468 breast cancer cells due to CYP1 activation, Oncol. Rep.21 (2009) 1525–1528; https://doi.org/10.3892/or_0000038410.3892/or_0000038419424633
DOI: https://doi.org/10.2478/acph-2019-0039 | Journal eISSN: 1846-9558 | Journal ISSN: 1330-0075
Language: English
Page range: 541 - 562
Accepted on: Jul 23, 2019
Published on: Oct 21, 2019
Published by: Croatian Pharmaceutical Society
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year
Related subjects:

© 2019 Goran Benković, Mirza Bojić, Željan Maleš, Siniša Tomić, published by Croatian Pharmaceutical Society
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.