Have a personal or library account? Click to login
An overview of structurally diversified anticonvulsant agents Cover

An overview of structurally diversified anticonvulsant agents

Open Access
|Jun 2019

References

  1. 1. R. Fisher, W. Boas, W. Blume, C. Elger, P. Genton, P. Lee and J. Engel, Epileptic seizures and epilepsy: definitions proposed by the international league against epilepsy (ILAE) and the international bureau for epilepsy (IBE), Epilepsia46 (2005) 470–472; https://doi.org/10.1111/j.0013-9580.2005.66104.x10.1111/j.0013-9580.2005.66104.x
  2. 2. P. A. Dekker, Epilepsy: A Manual for Medical and Clinical Officers in Africa, WHO, Geneva 2002, pp. 133.
  3. 3. M. J. Brodie, A. T. Elder and P. Kwan, Epilepsy in later life, Lancet Neurol. 8 (2009) 1019–1030; https://doi.org/10.1016/S1474-4422(09)70240-610.1016/S1474-4422(09)70240-6
  4. 4. E. Proulx, Y. Leshchenko, L. Kokarovtseva, V. Khokhotva, M. El-Beheiry, O. C. Snead and J. L. P. Velazquez, Functional contribution of specific brain areas to absence seizures: role of thalamic gapjunctional coupling, Eur. J. Neurosci.23 (2006) 489–496; https://doi.org/10.1111/j.1460-9568.2005.04558.x10.1111/j.1460-9568.2005.04558.x16420455
  5. 5. S. F. Berkovic, R. A. Howell, D. A. Hay and J. L. Hopper, Epilepsies in twins: Genetics of the major epilepsy syndromes, Ann. Neurol.43 (1998) 435–445; https://doi.org/10.1002/ana.41043040510.1002/ana.4104304059546323
  6. 6. L. A. Corey, J. M. Pellock, M. J. Kjeldsen and K. O. Nakken, Importance of genetic factors in the occurrence of epilepsy syndrome type: A twin study, Epilepsy Res.97 (2011) 103–111; https://doi.org/10.1016/j.eplepsyres.2011.07.01810.1016/j.eplepsyres.2011.07.018321584321885256
  7. 7. M. J. Kjeldsen, L. A. Corey, M. H. Solaas, M. L. Friis, J. R. Harris, K. O. Kyvik, K. Christensen and J. M. Pellock, Genetic factors in seizures: A population-based study of 47,626 US, Norwegian and Danish twin pairs, Twin Res. Hum. Genet.8 (2005) 138–147; https://doi.org/10.1375/183242705373883610.1375/183242705373883615901477
  8. 8. M. Li, X. Heng, R. Tao, J. Liu, L. Zhang, X. Sun, L. Wang, Q. Wu, F. Che and F. Xue, A genetic epidemiological survey of idiopathic epilepsy in the Chinese Han population, Epilepsy Res.98 (2012) 199–205; https://doi.org/10.1016/j.eplepsyres.2011.09.01310.1016/j.eplepsyres.2011.09.01321993360
  9. 9. R. R. Nair and S. V. Thomas, Genetic liability to epilepsy in Kerala State India, Epilepsy Res.62 (2004) 163–170; https://doi.org/10.1016/j.eplepsyres.2004.08.00710.1016/j.eplepsyres.2004.08.00715579304
  10. 10. R. Ottman, Genetic influences on risk for epilepsy, in Pediatric Epilepsy: Diagnosis and Therapy, Demos Medical Publishing, New York 2007.
  11. 11. H. J. Li, R. P. Wan, L. J. Tang, S. J. Liu, Q. H. Zhao, M. M. Gao, Y. H. Yi, W. P. Liao, X. F. Sun and Y. S. Long, Alteration of Scn3a expression is mediated via CpG methylation and MBD2 in mouse hippo-campus during postnatal development and seizure condition, Biochim. Biophys. Acta1849 (2015) 1–9; https://doi.org/10.1016/j.bbagrm.2014.11.00410.1016/j.bbagrm.2014.11.00425459751
  12. 12. K. Nagai, T. Natori, T. Nishino and F. Kodaira, Epigenetic dysregulation induces cell growth retardation in primary cultured glial cells, J. Biosci. Bioeng.105 (2008) 470–475; https://doi.org/10.1263/jbb.105.47010.1263/jbb.105.47018558336
  13. 13. E. Hessen, M. I. Lossius, I. Reinvang and L. Gjerstad, Influence of major antiepileptic drugs on attention, reaction time, and speed of information processing: results from a randomized, double-blind, placebo-controlled withdrawal study of seizure-free epilepsy patients receiving monotherapy, Epilepsia47 (2006) 2038–2045; https://doi.org/10.1111/j.1528-1167.2006.00805.x10.1111/j.1528-1167.2006.00805.x
  14. 14. V. C. Terra, R. Amorim, C. Silvado, A. J. de Oliveira, C. L. Jorge, E. Faveret, P. Ragazzo and L. De Paola, Vagus nerve stimulator in patients with epilepsy: indications and recommendations for use, Arq. Neuro-Psiquiatr.71 (2013) 902–906; https://doi.org/10.1590/0004-282X2013011610.1590/0004-282X20130116
  15. 15. P. Lisowska and B. Daly, Vagus nerve stimulation therapy (VNST) in epilepsy - implications for dental practice, Br. Dent. J.212 (2012) 69–72; https://doi.org/10.1038/sj.bdj.2012.4710.1038/sj.bdj.2012.47
  16. 16. B. M. Uthman, Vagus nerve stimulation for seizures, Arch. Med. Res.31 (2000) 300–303; https://doi.org/10.1016/S0188-4409(00)00060-610.1016/S0188-4409(00)00060-6
  17. 17. I. S. Cooper and A. R. M. Upton, Use of chronic cerebellar stimulation for disorders of disinhibition, Lancet311 (1978) 595–600; https://doi.org/http://doi.org/10.1016/S0140-6736(78)91038-310.1016/S0140-6736(78)91038-3
  18. 18. I. S. Cooper, A. R. M. Upton and I. Amin, Reversibility of chronic neurologic deficits: Some effects of electrical stimulation of the thalamus and internal capsule in man, Appl. Neurophysiol. 43 (1980) 224–258; https://doi.org/10.1159/00010226310.1159/0001022636975064
  19. 19. K. W. Baranano and A. L. Hartman, The ketogenic diet: Uses in epilepsy and other neurologic illnesses, Curr. Treat. Options Neurol. 10 (2008) 410–419.10.1007/s11940-008-0043-8289856518990309
  20. 20. A. L. Rogovik and R. D. Goldman, Ketogenic diet for treatment of epilepsy, Can. Fam. Physician56 (2010) 540–542.
  21. 21. M. Greener, Food for thought: the ketogenic diet for epilepsy, Prog. Neurol. Psychiatry18 (2014) 6–9; https://doi.org/10.1002/pnp.32910.1002/pnp.329
  22. 22. M. Ne, L. Ngo, J. I. Sirven and M. R. Sperling, Ketogenic diet in adolescents and adults with epilepsy, Seizure23 (2014) 439–442; https://doi.org/10.1016/j.seizure.2014.02.01510.1016/j.seizure.2014.02.01524675110
  23. 23. R. Hanaya and K. Arita, The new antiepileptic drugs: their neuropharmacology and clinical indications, Neurol. Med. Chir. (Tokyo) 56 (2016) 205–220; https://doi.org/10.2176/nmc.ra.2015-034410.2176/nmc.ra.2015-0344487017526935782
  24. 24. J. A. French and D. M. Gazzola, New generation antiepileptic drugs: what do they offer in terms of improved tolerability and safety? Ther. Adv. Drug Saf.2 (2011) 141–158; https://doi.org/10.1177/204209861141112710.1177/2042098611411127
  25. 25. G. Gatti, I. Bonomi, G. Jannuzzi and E. Perucca, The new antiepileptic drugs: Pharmacological and clinical aspects, Curr. Pharm. Design6 (2000) 839–860; https://doi.org/10.2174/138161200340024510.2174/1381612003400245
  26. 26. A. Nicolson and J. P. Leach, Future prospects for the drug treatment of epilepsy, CNS Drugs15 (2001) 955–968; https://doi.org/10.2165/00023210-200115120-0000510.2165/00023210-200115120-00005
  27. 27. C. T. Supuran, F. Mincione, A. Scozzafava, F. Briganti, G. Mincione and M. A. Ilies, Carbonic anhydrase inhibitors – Part 52. Metal complexes of heterocyclic sulfonamides: A new class of strong topical intraocular pressure-lowering agents in rabbits, Eur. J. Med. Chem.33 (1998) 247–254; https://doi.org/10.1016/S0223-5234(98)80059-710.1016/S0223-5234(98)80059-7
  28. 28. M. Ilies, C. T. Supuran, A. Scozzafava, A. Casini, F. Mincione, L. Menabuoni, M. T. Caproiu, M. Maganu and M. D. Banciu, Carbonic anhydrase inhibitors. Sulfonamides incorporating furan-, thiopheneand pyrrole-carboxamido groups possess strong topical intraocular pressure lowering properties as aqueous suspensions, Bioorg. Med. Chem. 8 (2000) 2145–2155; https://doi.org/10.1016/S0968-0896(00)00143-710.1016/S0968-0896(00)00143-7
  29. 29. A. Scozzafava, L. Menabuoni, F. Mincone, F. Briganti, G. Mincione and C. T. Supuran, Carbonic anhydrase inhibitors. Perfluoroalkyl/aryl-substituted derivatives of aromatic/heterocyclic sulfonamides as topical intraocular pressure lowering agents with prolonged duration of action, J. Med. Chem.43 (2000) 4542–4551; https://doi.org/10.1021/jm000296j10.1021/jm000296j11087579
  30. 30. A. Casini, A. Scozzafava, F. Mincione, L. Menabuoni, M. A. Ilies and C. T. Supuran, Carbonic anhydrase inhibitors: Water soluble 4-sulfamoylphenyl-thioureas as topical intraocular pressure-lowering agents with long-lasting effects, J. Med. Chem.43 (2000) 4884–4892; https://doi.org/10.1021/jm001051+10.1021/jm001051+11123998
  31. 31. B. Masereel, S. Rolin, F. Abbate, A. Scozzafava and C. T. Supuran, Carbonic anhydrase inhibitors: Anticonvulsant sulfonamides incorporating valproyl and other lipophilic moieties, J. Med. Chem. 45 (2002) 312–320; https://doi.org/10.1021/jm010919910.1021/jm010919911784136
  32. 32. M. A. Ilies, B. Masereel, S. Rolin, A. Scozzafava, G. Câmpeanu, V. Cîmpeanu and C. T. Supuran, Carbonic anhydrase inhibitors: aromatic and heterocyclic sulfonamides incorporating adamantyl moieties with strong anticonvulsant activity, Bioorg. Med. Chem.12 (2004) 2717–2726; https://doi.org/10.1016/j.bmc.2004.03.00810.1016/j.bmc.2004.03.00815110853
  33. 33. I. B. Linden, G. Gothoni, P. Kontro and S. S. Oja, Anticonvulsant activity of 2-phthalimidoethane sulphonamides: New derivatives of taurine, Neurochem. Int.5 (1983) 319–324; https://doi.org/10.1016/j.bmc.2004.03.00810.1016/j.bmc.2004.03.008
  34. 34. O. Akgul, F. S. Kilic, K. Erol and V. Pabuccuoglu, Synthesis and anticonvulsant activity of some N-phenyl-2-phtalimidoethanesulfonamide derivatives, Arch. Pharm. (Weinheim) 340 (2007) 656–660; https://doi.org/10.1002/ardp.20070016610.1002/ardp.20070016618038376
  35. 35. N. Siddiqui, M. F. Arshad, S. A. Khan and W. Ahsan, Sulfonamide derivatives of thiazolidin-4-ones with anticonvulsant activity against two seizure models: synthesis and pharmacological evaluation, J. Enzyme Inhib. Med. Chem.25 (2010) 485–491; https://doi.org/10.3109/1475636090328283310.3109/1475636090328283320233086
  36. 36. Y. Hu, C. Y. Li, X. M. Wang. Y. H. Yang and H. L. Zhu, 1,3,4-Thiadiazole: Synthesis, reactions, and applications in medicinal, agricultural, and materials chemistry, Chem. Rev.114 (2014) 5572–5610; https://doi.org/10.1021/cr400131u10.1021/cr400131u24716666
  37. 37. A. K. Jain, S. Sharma, A. Vaidya, V. Ramachandran and R. K. Agrawal, 1,3,4-Thiadiazole and its derivatives: a review on recent progress in biological activities, Chem. Biol. Drug Des.81 (2013) 557–576; https://doi.org/10.1111/cbdd.1212510.1111/cbdd.1212523452185
  38. 38. W. Dehaen, V. A. Bakulev, E. C. Taylor and J. A. Ellman, The Chemistry of 1,2,3-thiadiazoles, in The Chemistry of Heterocyclic Compounds (Ed. E. C. Taylor), 1st ed., John Wiley & Sons, New York 2004, pp. 5–240.
  39. 39. A. Gupta, P. Mishra, S. Kashaw, V. Jatav and J. P. Stables, Synthesis and anticonvulsant activity of some novel 3-arylamino/amino-4-aryl-5-imino-Δ2-1,2,4-thiadiazoline, Eur. J. Med. Chem.43 (2008) 749–754; https://doi.org/10.1016/j.ejmech.2007.05.00810.1016/j.ejmech.2007.05.00817624632
  40. 40. A. Gupta, P. Mishra, S. N. Pandeya, S. K. Kashaw, V. Kashaw and J. P. Stables, Synthesis and anticonvulsant activity of some substituted 1,2,4-thiadiazoles, Eur. J. Med. Chem.44 (2009) 1100–1105; https://doi.org/10.1016/j.ejmech.2008.06.01510.1016/j.ejmech.2008.06.01518672318
  41. 41. B. Ahamad and M. Yusuf, Synthesis of aromatic aldehyde imine derivative of 2-thiobenzyl-1,3,4-thiadiazole and evaluation of their anticonvulsant activity, Indian J. Chem. B 49 (2010) 241–246.
  42. 42. V. Jatav, P. Mishra, S. Kashaw and J. P. Stables, CNS depressant and anticonvulsant activities of some novel 3-[5-substituted1,3,4-thiadiazole-2-yl]-2-styryl quinazoline-4(3H)-ones, Eur. J. Med. Chem.43 (2008) 1945–1954; https://doi.org/10.1016/j.ejmech.2007.12.00310.1016/j.ejmech.2007.12.00318222569
  43. 43. A. Foroumadi, V. Sheibani, A. Sakhteman, M. Rameshk, M. Abbasi, R. Farazifard, S. A. Tabatabai and A. Shafiee, Synthesis and anticonvulsant activity of novel 2-amino-5-[4-chloro-2-(2-chlorophenoxy) phenyl]-1,3,4-thiadiazole derivatives, DARU J. Pharm. Sci.15 (2007) 89–93.
  44. 44. X. Q. Deng, Z. Q. Dong, M. X. Song, B. Shu, S. B. Wang and Z. S. Quan, Synthesis and anticonvulsant activities of some triazolothiadiazole derivatives, Arch. Pharm. (Weinheim) 345 (2012) 565–573; https://doi.org/10.1002/ardp.20110032610.1002/ardp.20110032622532235
  45. 45. H. Rajak, C. K. Behera, R. S. Pawar, P. K. Singour and M. D. Kharya, Synthesis and anticonvulsant evaluation of some novel 2,5-disubstituted 1,3,4-thiadiazoles: pharmacophore model studies, Acta Pol. Pharm.67 (2010) 503–510.
  46. 46. H. Rajak, B. S. Thakur, P. Kumar, P. Parmar, P. C. Sharma, R. Veerasamy and M. D. Kharya, Synthesis and antiepileptic activity of some novel semicarbazones containing 1,3,4-thiadiazole and quinazoline ring, Acta Pol. Pharm.69 (2012) 253–261.
  47. 47. N. Siddiqui, A. Rana, S. A. Khan, S. E. Haque, M. F. Arshad, S. Ahmed and W. Ahsan, Synthesis and preliminary screening of benzothiazol-2-yl-thiadiazole derivatives for anticonvulsant activity, Acta Pharm.59 (2009) 441–451; https://doi.org/10.2478/v10007-009-0031-x10.2478/v10007-009-0031-x19919933
  48. 48. M. S. Yar and M. W. Akhter, Synthesis and anticonvulsant activity of substituted oxadiazole and thiadiazole derivatives, Acta Pol. Pharm.66 (2009) 393–397.
  49. 49. K. P. Harish, K. N. Mohana and L. Mallesha, Synthesis of pyrazine substituted 1,3,4-thiadiazole derivatives and their anticonvulsant activity, Org. Chem. Int.2013 (2013) Article ID 631723 (8 pages); https://doi.org/10.1155/2013/63172310.1155/2013/631723
  50. 50. A. H. Al Rohaimi, Neuropharmacological and toxicity study of newly prepared N-[5-(3-chloro-4-fluorophenyl)-1,3,4-thiadiazol-2-yl]-2-substituted acetamides, Acta Pol. Pharm.72 (2015) 1315–1320.
  51. 51. J. R. Dimmock, S. C. Vashistha and J. P. Stable, Anticonvulsant properties of various acetylhydrazones, oxymoylhydrazones, and semicarbazones derived from aromatic and unsaturated carbonyl compounds, Eur. J. Med. Chem.35 (2000) 241–248; https://doi.org/10.1016/S0223-5234(00)00123-910.1016/S0223-5234(00)00123-9
  52. 52. J. R. Dimmock, S. C. Vashistha and J. P. Stable, Ureylene anticonvulsants and related compounds, Pharmazie55 (2000) 490–494.
  53. 53. S. N. Pandeya, H. Manjula and J. P. Stables, Design of semicarbazones and their bio-isosteric analogues as potential anticonvulsants, Pharmazie56 (2001) 121–124.10.1002/chin.200118081
  54. 54. S. N. Pandeya, I. Ponnilavarasan, A. Pandey, R. Lakhan and J. P. Stables, Evaluation of p-nitrophenyl substituted semicarbazones for anticonvulsant properties, Pharmazie54 (1999) 923–925.
  55. 55. J. R. Dimmock, R. N. Puthucode, J. Tuchek, J. B. Baker, C. N. Hinko, C. L. Steinmiller and J. P. Stable, Anticonvulsant activity of 4-(4’-fluorophenoxy)benzaldehyde semicabazone, Drug. Dev. Res.46 (1999) 112–125; https://doi.org/10.1002/(SICI)1098-2299(199902)46:2<112::AID-DDR4>3.0.CO;2-N10.1002/(SICI)1098-2299(199902)46:2<;112::AID-DDR4>3.0.CO;2-N
  56. 56. O. Alam, P. Mallick, S. P. Verma, S. J. Gilani, S. A. Khan, N. Siddiqui and W. Ahsan, Synthesis, anticonvulsant and toxicity screening of newer pyrimidine semicarbazone derivatives, Eur. J. Med. Chem.45 (2010) 2467–2472; https://doi.org/10.1016/j.ejmech.2010.02.03110.1016/j.ejmech.2010.02.031
  57. 57. P. Yogeeswari, D. Sriram, S. Mehta, D. Nigam, M. M. Kumar, S. Murugesan and J. P. Stables, Anticonvulsant and neurotoxicity evaluation of some 6-substituted benzothiazolyl-2-thiosemicarbazones, I. L. Farmaco60 (2005) 1–5; https://doi.org/10.1016/j.farmac.2004.09.00110.1016/j.farmac.2004.09.001
  58. 58. P. Yogeeswari, D. Sriram, V. Saraswat, J. V. Ragavendran, M. M. Kumar, S. Murugesan, R. Thirumurugan and J. P. Stables, Synthesis and anticonvulsant and neurotoxicity evaluation of N4-phthalimido phenyl (thio) semicarbazides, Eur. J. Pharm. Sci.20 (2003) 341–346; https://doi.org/10.1016/j.ejps.2003.08.00210.1016/j.ejps.2003.08.002
  59. 59. U. Çalış, E. Septioğlu and M. D. Aytemir, Synthesis and anticonvulsant evaluation of some novel (thio) semicarbazone derivatives of arylalkylimidazole, Arzneimittelforschung61 (2011) 327–334; https://doi.org/10.1055/s-0031-129620610.1055/s-0031-1296206
  60. 60. F. Azam, I. A. Alkskas, S. L. Khokra and O. Prakash, Synthesis of some novel N4-(naphtha[1,2-d]thiazol-2-yl)semicarbazone as potential anticonvulsants, Eur. J. Med. Chem.44 (2009) 203–209; https://doi.org/10.1016/j.ejmech.2008.02.00710.1016/j.ejmech.2008.02.007
  61. 61. E. D. Ilieva, N. I. Petkova and R. D. Nikolova, A new and efficient method for the synthesis of 3,4-di-substituted pyrrolidine-2,5-diones, Molecules17 (2012) 4936–4949; https://doi.org/10.3390/molecules1705493610.3390/molecules17054936
  62. 62. J. Obniska and K. Kamiński, Synthesis and anticonvulsant properties of new N-phenylamino derivatives of 2-azaspiro[4.4]nonane, 2-azaspiro[4.5]decane-1,3-dione and 3 cyclohexyl-pyrrolidine-2,5-dione. Part IV, Acta Pol. Pharm.63 (2006) 101–108.
  63. 63. J. Obniska and K. Kamiński, Lipophilicity characterization of new N-phenylamino-azaspiranes as potential anticonvulsant agents, Biomed. Chromatogr. 20 (2006) 1185–1191; https://doi.org/10.1002/bmc.68210.1002/bmc.682
  64. 64. J. Obniska, R. Lesyk, D. Atamanyuk and K. Kamiński, Synthesis and anticonvulsant activity of a series of N-substituted bicyclo[2,2,1]hept-5-ene-2,3-dicarboximides, Acta Pol. Pharm.62 (2005) 213–219.
  65. 65. J. Obniska, S. Jurczyk, A. Zejc, K. Kamiński, E. Tatarczynska and K. Stachowicz, Anticonvulsant properties of N-(4-methylpiperazin-1-yl)- and N-[3-(4-methylpiperazin-1-yl)propyl] derivatives of 3-aryl and 3-spirocycloalkyl-pyrrolidine-2,5-dione, Pharmacol. Rep.57 (2005) 170–175.
  66. 66. K. Kamiński and J. Obniska, Design, synthesis, and anticonvulsant activity of N-phenylamino derivatives of 3,3-dialkyl-pyrrolidine-2,5-diones and hexahydro-isoindole-1,3-diones, Bioorg. Med. Chem.16 (2008) 4921–4931; https://doi.org/10.1016/j.bmc.2008.03.03710.1016/j.bmc.2008.03.037
  67. 67. J. Obniska, K. Kamiński, D. Skrzynska and J. Pichor, Synthesis and anticonvulsant activity of new N-[(4-arylpiperazin-1-yl)-alkyl] derivatives of 3-phenyl-pyrrolidine-2,5-dione, Eur. J. Med. Chem.44 (2009) 2224–2233; https://doi.org/10.1016/j.ejmech.2008.05.02010.1016/j.ejmech.2008.05.02018603334
  68. 68. J. Obniska, M. Kopytko, A. Zagórska, I. Chlebek and K. Kamiński, Synthesis and anticonvulsant properties of new Mannich bases derived from 3-aryl-pyrrolidine-2,5-diones. Part 1, Arch. Pharm. (Weinheim) 343 (2010) 333–341; https://doi.org/10.1002/ardp.20090025010.1002/ardp.20090025020379970
  69. 69. K. Kamiński, S. Rzepka and J. Obniska, Synthesis and anticonvulsant activity of new 1-[2-oxo-2-(4-phenylpiperazin-1-yl)ethyl]pyrrolidine-2,5-diones, Bioorg. Med. Chem. Lett.21 (2011) 5800–803; https://doi.org/10.1016/j.bmcl.2011.07.11810.1016/j.bmcl.2011.07.11821875804
  70. 70. J. Obniska, I. Chlebek and K. Kamiński, Synthesis and anticonvulsant properties of new Mannich bases derived from 3,3-disubstituted pyrrolidine-2,5-diones, Part IV, Arch. Pharm. (Weinheim) 345 (2012) 713–722; https://doi.org/10.1002/ardp.20120009210.1002/ardp.20120009222674811
  71. 71. K. Kamiński, J. Obniska, I. Chlebek, B. Wiklik and S. Rzepka, Design, synthesis and anticonvulsant properties of new N-Mannich bases derived from 3-phenylpyrrolidine-2,5-diones, Bioorg. Med. Chem. Lett.21 (2013) 6821–6830; https://doi.org/10.1016/j.bmc.2013.07.02910.1016/j.bmc.2013.07.02923993970
  72. 72. J. Obniska, I. Chlebek, K. Kamiński and J. Karolak-Wojciechowska, Synthesis and anticonvulsant properties of new N-Mannich bases derived from 3, 3-diphenyl- and 3-ethyl-3-methyl-pyrrolidine-2,5-diones, Part III, Arch. Pharm. (Weinheim) 346 (2013) 71–82; https://doi.org/10.1002/ardp.20120026510.1002/ardp.20120026523180594
  73. 73. K. Kamiński, B. Wiklik and J. Obniska, Synthesis, anticonvulsant properties, and SAR analysis of differently substituted pyrrolidine-2,5-diones and piperidine-2,6-diones, Arch. Pharm. (Weinheim) 347 (2014) 840–852; https://doi.org/10.1002/ardp.20140017910.1002/ardp.20140017925196991
  74. 74. S. Rybka, J. Obniska, A. Rapacz, B. Filipek and K. Kamiński, Synthesis, physicochemical, and anticonvulsant properties of new N-Mannich bases derived from pyrrolidine-2,5-dione and its 3-methyl analog, Arch. Pharm. (Weinheim) 347 (2014) 768–776; https://doi.org/10.1002/ardp.20140015210.1002/ardp.20140015225139813
  75. 75. J. Obniska, A. Rapacz, S. Rybka, B. Powroznik, E. Pekala, B. Filipek, P. Zmudzki and K. Kamiński, Design, synthesis and biological activity of new amides derived from 3-methyl-3-phenyl-2, 5-dioxopyrrolidin-1-yl-acetic acid, Eur. J. Med. Chem.102 (2015) 14–25; https://doi.org/10.1016/j.ejmech.2015.07.01710.1016/j.ejmech.2015.07.01726241874
  76. 76. K. Kamiński, M. Zagaja, A. Rapacz, J. J. Tuszczki, M. Andres-Mach, M. Abram and J. Obniska, New hybrid molecules with anticonvulsant and antinociceptive activity derived from 3-methyl- or 3,3-dimethyl-1-[1-oxo-1-(4-phenylpiperazin-1-yl) propan-2-yl]pyrrolidine-2,5-diones, Bioorg. Med. Chem.24 (2016) 606–618; https://doi.org/10.1016/j.bmc.2015.12.02710.1016/j.bmc.2015.12.02726746343
  77. 77. A. Rapacz, S. Rybka, J. Obniska, K. Sałat, B. Powroźnik, E. Pękala and B. Filipek, Evaluation of anticonvulsant and antinociceptive properties of new N-Mannich bases derived from pyrrolidine-2,5-dione and 3-methylpyrrolidine-2,5-dione, Naunyn-Schmiedeberg Arch. Pharmacol.389 (2016) 339–348; https://doi.org/10.1007/s00210-015-1194-210.1007/s00210-015-1194-2474964226650502
  78. 78. S. Rybka, J. Obniska, A. Rapacz, B. Filipek and P. Zmudzki, Synthesis and anticonvulsant activity of new N-Mannich bases derived from benzhydryl- and isopropyl-pyrrolidine-2,5-dione, J. Enzyme Inhib. Med. Chem.31 (2016) 1038–1047; https://doi.org/10.3109/14756366.2015.108884210.3109/14756366.2015.108884226406340
  79. 79. S. Rybka, J. Obniska, A. Rapacz, B. Filipek and P. Zmudzki, Synthesis and evaluation of anticonvulsant properties of new N-Mannich bases derived from pyrrolidine-2,5-dione and its 3-methyl-, 3-isopropyl, and 3-benzhydryl analogs, Bioorg. Med. Chem. Lett.27 (2017) 1412–1415; https://doi.org/10.1016/j.bmcl.2017.02.00210.1016/j.bmcl.2017.02.00228202327
  80. 80. F. Schiaffella, A. Macchiarulo, L. Milanese, A. Vecchiarelli and R. Fringuelli, Novel ketoconazole analogues based on the replacement of 2,4-dichlorophenyl group with 1,4-benzothiazine moiety: Design, synthesis, and microbiological evaluation, Bioorg. Med. Chem.14 (2006) 5196–5203; https://doi.org/10.1016/j.bmc.2006.04.00410.1016/j.bmc.2006.04.00416650767
  81. 81. L. Navidpour, H. Shadnia, H. Shafaroodi, M. Amini, A. R. Dehpour and A. Shafiee, Design, synthesis, and biological evaluation of substituted 2-alkylthio-1,5-diarylimidazoles as selective COX-2 inhibitors, Bioorg. Med. Chem.15 (2007) 1976–1982; https://doi.org/10.1016/j.bmc.2006.12.04110.1016/j.bmc.2006.12.04117258905
  82. 82. J. C. Thenmozhiyal, P. T. Wong and W. K. Chui, Anticonvulsant activity of phenylmethyl-enehydantoins: A structure-activity relationship study, J. Med. Chem.47 (2004) 1527–1535; https://doi.org/10.1021/jm030450c10.1021/jm030450c14998338
  83. 83. A. Karakurt, M. Ozalp, S. Isik, J. P. Stables and S. Dalkara, Synthesis, anticonvulsant and antimicrobial activities of some new 2-acetylnaphthalene derivatives, Bioorg. Med. Chem.18 (2010) 2902–2911; https://doi.org/10.1016/j.bmc.2010.03.01010.1016/j.bmc.2010.03.01020363141
  84. 84. A. Husain, N. Siddiqui, M. Sarafroz, Y. Khatoon, M. Rasid and N. Ahmad, Synthesis, anticonvulsant and neurotoxicity screening of some novel 1,2,4-trisubstituted-1H-imidazole derivatives, Acta Pol. Pharm.68 (2011) 657–663.
  85. 85. M. Amir, I. Ali and M. Z. Hassan, Imidazole incorporated semicarbazone derivatives as a new class of anticonvulsants: Design, synthesis and in vivo screening, Med. Chem.9 (2013) 571–580; https://doi.org/10.2174/157340641130904001110.2174/157340641130904001123651037
  86. 86. S. Ulloora, R. Shabaraya, S. Aamir and A. V. Adhikari, New imidazo[1,2-a]pyridines carrying active pharmacophores: Synthesis and anticonvulsant studies, Bioorg. Med. Chem. Lett.23 (2013) 1502–1506; https://doi.org/10.1016/j.bmcl.2012.12.03510.1016/j.bmcl.2012.12.03523352511
  87. 87. S. Ulloora, R. Shabaraya and A. V. Adhikari, Facile synthesis of new imidazo[1,2-a] pyridines carrying 1,2,3-triazoles via click chemistry and their antiepileptic studies, Bioorg. Med. Chem. Lett.23 (2013) 3368–3372; https://doi.org/10.1016/j.bmcl.2013.03.08610.1016/j.bmcl.2013.03.08623623419
  88. 88. M. I. Attia, M. N. Aboul-Enein, A. A. El-Azzouny, Y. A. Maklad and H. A. Ghabbour, Anticonvulsant potential of certain new (2E)-2-[1-aryl-3-(1H-imidazol-1-yl)propylidene]-N-(aryl/H) hydrazinecarboxamides, Sci. World J. 2014 (2014) Article ID 357403 (9 pages); https://doi.org/10.1155/2014/35740310.1155/2014/357403391350924523636
  89. 89. R. K. Gill, R. K. Rawal and J. Bariwal, Recent advances in the chemistry and biology of benzothiazoles, Arch. Pharm. (Weinheim) 348 (2015) 155–178; https://doi.org/10.1002/ardp.20140034010.1002/ardp.20140034025682746
  90. 90. N. Siddiqui, A. Rana, S. A. Khan, M. A. Bhat and S. E. Haque, Synthesis of benzothiazole semicarbazones as novel anticonvulsants - the role of hydrophobic domain, Bioorg. Med. Chem. Lett.17 (2007) 4178–4182; https://doi.org/10.1016/j.bmcl.2007.05.04810.1016/j.bmcl.2007.05.04817572089
  91. 91. A. Rana, N. Siddiqui, S. A. Khan, S. E. Haque and M. A. Bhat, N-{[(6-substituted-1,3-benzothiazole-2-yl)amino]carbonothioyl}-2/4-substituted benzamides: Synthesis and pharmacological evaluation, Eur. J. Med. Chem.43 (2008) 1114–1122; https://doi.org/10.1016/j.ejmech.2007.07.00810.1016/j.ejmech.2007.07.00817826870
  92. 92. M. Z. Hassan, S. A. Khan and M. Amir, Design, synthesis and evaluation of N-(substituted benzothiazol-2-yl) amides as anticonvulsant and neuroprotective, Eur. J. Med. Chem.58 (2012) 206–213; https://doi.org/10.1016/j.ejmech.2012.10.00210.1016/j.ejmech.2012.10.00223124217
  93. 93. N. Siddiqui, A. Rana, S. A. Khan, S. E. Haque, M. F. Arshad, S. Ahmed and W. Ahsan, Synthesis and preliminary screening of benzothiazol-2-yl thiadiazole derivatives for anticonvulsant activity, Acta Pharm. 59 (2009) 441–451; https://doi.org/10.2478/v10007-009-0031-x10.2478/v10007-009-0031-x19919933
  94. 94. N. Siddiqui, S. N. Pandeya, S. A. Khan, J. Stables, A. Rana, M. Alam, M. F. Arshad and M. A. Bhat, Synthesis and anticonvulsant activity of sulfonamide derivatives-hydrophobic domain, Bioorg. Med. Chem. Lett.17 (2007) 255–259; https://doi.org/10.1016/j.bmcl.2006.09.05310.1016/j.bmcl.2006.09.05317046248
  95. 95. A. A. Farag, S. N. Abd-Alrahman, G. F. Ahmed, R. M. Ammar, Y. A. Ammar and S. Y. Abbas, Synthesis of some azoles incorporating a sulfonamide moiety as anticonvulsant agents, Arch. Pharm. (Weinheim) 345 (2012) 703–712; https://doi.org/10.1002/ardp.20120001410.1002/ardp.20120001422696252
  96. 96. N. Siddiqui, M. F. Arshad and S. A. Khan, Synthesis of some new coumarin incorporated thiazolyl semicarbazones as anticonvulsants, Acta Pol. Pharm. 66 (2009) 161–167.
  97. 97. D. C. Liu, X. Q. Deng, S. B. Wang and Z. S. Quan, Synthesis and anticonvulsant activity evaluation of 7-alkoxy[1,2,4]triazolo[3,4-b]benzothiazol-3(2H)-ones, Arch. Pharm. (Weinheim) 347 (2014) 268–275; https://doi.org/10.1002/ardp.20130027710.1002/ardp.20130027724448887
  98. 98. X. Q. Deng, M. X. Song, C. X. Wei, F. N. Li and Z. S. Quan, Synthesis and anticonvulsant activity of 7-alkoxy-triazolo-[3,4-b]benzo[d]thiazoles, Med. Chem.6 (2010) 313–320; https://doi.org/10.2174/15734061079335885510.2174/15734061079335885520977415
  99. 99. N. Siddiqui, A. Rana, S. A. Khan, S. E. Haque, M. S. Alam, W. Ahsan and S. Ahmed, Synthesis of 8-substituted-4-(2/4-substituted phenyl)-2H-[1,3,5]triazino[2,1-b][1,3]benzothiazole-2-thiones and their anticonvulsant, anti-nociceptive, and toxicity evaluation in mice, J. Enzyme Inhib. Med. Chem.24 (2009) 1344–1350; https://doi.org/10.3109/1475636090288817610.3109/14756360902888176
  100. 100. D. Liu, H. Zhang, C. Jin and Z. Quan, Synthesis and biological evaluation of novel benzothiazole derivatives as potential anticonvulsant agents, Molecules21 (2016) Article ID 164 (13 pages); https://doi.org/10.3390/molecules2103016410.3390/molecules21030164
  101. 101. J. D. Conley and H. Kohn, Functionalized DL-amino acid derivatives. Potent new agents for the treatment of epilepsy, J. Med. Chem.30 (1987) 567–574; https://doi.org/10.1021/jm00386a02110.1021/jm00386a021
  102. 102. H. Kohn, J. D. Conley and J. D. Leander, Marked stereospecificity in a new class of anticonvulsants, Brain Res.457 (1988) 371–375; https://doi.org/10.1016/0006-8993(88)90709-310.1016/0006-8993(88)90709-3
  103. 103. H. Kohn, K. N. Sawhney, P. LeGall, J. D. Conley, D. W. Robertson and J. D. Leander, Preparation and anticonvulsant activity of a series of functionalized α-aromatic and α-heteroaromatic amino acids, J. Med. Chem.33 (1990) 919–926; https://doi.org/10.1021/jm00165a00610.1021/jm00165a0062308141
  104. 104. H. Kohn, K. N. Sawhney, P. LeGall, D. W. Robertson and J. D. Leander, Preparation and anticonvulsant activity of a series of functionalized α-heteroatom-substituted amino acids, J. Med. Chem.34 (1991) 2444–2452; https://doi.org/10.1021/jm00112a02010.1021/jm00112a0201875341
  105. 105. H. Kohn, K. N. Sawhney, P. Bardel, D. W. Robertson and J. D. Leander, Synthesis and anticonvulsant activities of α-heterocyclic α-acetamido-N-benzylacetamide derivatives, J. Med. Chem.36 (1993) 3350–3360; https://doi.org/10.1021/jm00074a01610.1021/jm00074a0168230125
  106. 106. K. E. Andersen, C. Braestrup, F. C. Groenwald, A. S. Joergensen, E. B. Nielsen, U. Sonnewald, P. O. Soerensen, P. D. Suzdak and L. J. S. Knutsen, The synthesis of novel GABA uptake inhibitors. 1. Elucidation of the structure-activity studies leading to the choice of (R)-1-[4,4-bis(3-methyl-2-thienyl)-3-butenyl]-3-piperidinecarboxylic acid (Tiagabine) as an anticonvulsant drug candidate, J. Med. Chem.36 (1993) 1716–1725; https://doi.org/10.1021/jm00064a00510.1021/jm00064a0058510100
  107. 107. J. Zheng, R. Wen, X. Luo, G. Lin, J. Zhang, L. Xu, L. Guo and H. Jiang, Design, synthesis, and biological evaluation of the N-diarylalkenyl-piperidinecarboxylic acid derivatives as GABA uptake inhibitors (I), Bioorg. Med. Chem. Lett.16 (2006) 225–227; https://doi.org/10.1016/j.bmcl.2005.09.00410.1016/j.bmcl.2005.09.00416246548
  108. 108. N. Yadav, M. Malhotra, V. Monga, S. Sharma, J. Jain, Abdul Samad and A. Deep, Synthesis, characterization, and pharmacological evaluation of new GABA analogs as potent anticonvulsant agents, Med. Chem. Res.21 (2012) 2208–2216; https://doi.org/10.1007/s00044-011-9743-910.1007/s00044-011-9743-9
  109. 109. R. Torregrosa, X. F. Yang, E. T. Dustrude, T. R. Cummins, R. Khanna and H. Kohn, Chimeric derivatives of functionalized amino acids and α-aminoamides: Compounds with anticonvulsant activity in seizure models and inhibitory actions on central, peripheral, and cardiac isoforms of voltage-gated sodium channels, Bioorg. Med. Chem.23 (2015) 3655–3666; https://doi.org/10.1016/j.bmc.2015.04.01410.1016/j.bmc.2015.04.014446151625922183
  110. 110. C. O. Usifoh, D. M. Lambert, J. Wouters and G. K. E. Scriba, Synthesis and anticonvulsant activity of N,N-phthaloyl derivatives of central nervous system inhibitory amino acids, Arch. Pharm. (Weinheim) 334 (2001) 323–331; https://doi.org/10.1002/1521-4184(200110)334:10<323::AIDARDP323>3.0.CO;2-O10.1002/1521-4184(200110)334:10<;323::AID-ARDP323>3.0.CO;2-O
DOI: https://doi.org/10.2478/acph-2019-0023 | Journal eISSN: 1846-9558 | Journal ISSN: 1330-0075
Language: English
Page range: 321 - 344
Accepted on: Dec 15, 2018
|
Published on: Jun 26, 2019
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year
Related subjects:

© 2019 Faisal Al-Otaibi, published by Croatian Pharmaceutical Society
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.