Have a personal or library account? Click to login
Core-in-cup/liquisol dual tackling effect on azelnidipine buccoadhesive tablet micromeritics, in vitro release, and mucoadhesive strength Cover

Core-in-cup/liquisol dual tackling effect on azelnidipine buccoadhesive tablet micromeritics, in vitro release, and mucoadhesive strength

Open Access
|Jun 2019

References

  1. 1. D. Prabhakar, J. Sreekanth and K. N. Jayaveera, Development and evaluation of transdermal patches of azelnidipine, Int. J. Pharm. Pharm. Sci. 5 (2013) 805–810.
  2. 2. K. Wellington and L. J. Scott, Azelnidipine, Drugs63 (2003) 2613–2621; https://doi.org/10.2165/00003495-200363230-0000410.2165/00003495-200363230-00004
  3. 3. M. Kharwade and M. Sneha, A review on pioneering technique – liquisolid compact and applications, Res. J. Pharm. Biol. Chem. Sci. 6 (2015) 220–227.
  4. 4. D. Modi, P. Amaliyar, Y. Kalal, B. Gangadia, S. Chaudhary, K. Sanghvi, H. Shah and D. Y. Sen, Novel approach in compressed-coated tablet dosage form: Core-in-cup (in lay) tablet with geometrically altered drug delivery concept, Brit. Bio. Bull.1 (2013) 90–102.
  5. 5. J. K. Patel and N. K. Patel, Validated stability-indicating RP-HPLC method for the simultaneous determination of azelnidipine and olmesartan in their combined dosage form, Sci. Pharm. 82 (2014) 541–554; https://doi.org/10.3797/scipharm.1312-1410.3797/scipharm.1312-14
  6. 6. British Pharmacopeia 2015, TSO, London 2015.
  7. 7. B. Parodi, E. Russo, G. Caviglioli, S. Cafaggi and G. Brignardi, Development and characterization of a buccoadhesive dosage form of oxycodone hydrochloride, Drug Dev. Ind. Pharm. 22 (1996) 445–450; https://doi.org/10.3109/0363904960906935310.3109/03639049609069353
  8. 8. M. A. A. Kassem, A. N. ElMeshad and A. R. Fares, Enhanced bioavailability of buspirone hydrochloride via cup and corebuccal tablets: Formulation and in vitro/in vivo evaluation, Int. J. Pharm. 463 (2014) 68–80; https://doi.org/10.1016/j.ijpharm.2014.01.00310.1016/j.ijpharm.2014.01.003
  9. 9. European Medicines Agency, Guideline on quality of oral modified release products, 2012.
  10. 10. T. Higuchi, Mechanisms of sustained action medication, theoretical analysis of the rate of release of solid drugs dispersed in solid matrices, J. Pharm. Sci. 52 (1963) 1145–1149; https://doi.org/10.1002/jps.260052121010.1002/jps.2600521210
  11. 11. R. W. Korsmeyer, R. Gurny, E. Doelker, P. B. Nikolaos and A. Peppas, Mechanism of solute release from porous hydrophilic polymers, Int. J. Pharm. 72 (1983) 1189–1191; https://doi.org/10.1016/0378-5173(83)90064-910.1016/0378-5173(83)90064-9
  12. 12. S. Dash, P. N. Murthy, L. Nath and P. Chowdhury, Kinetic modeling on drug release from controlled drug delivery systems, Acta Pol. Pharm.67 (2010) 217–223.
  13. 13. J. Wu, H, Ho and M. Sheu, Influence of wet granulation and lubrication on the powder and tableting properties of codried product of microcrystalline cellulose with beta-cyclodextrin, Eur. J. Pharm. Biopharm. 51 (2001) 63–69.10.1016/S0939-6411(00)00137-5
  14. 14. R. J. Dias, S. S. Sakhare and K. K. Mali, Design and development of mucoadhesive acyclovir tablet, Iran J. Pharm. Res.8 (2009) 231–239.
  15. 15. Y.-C. Chen, H.-O. Ho, D.-Z. Liu, W.-S. Siow and M.-T. Sheu, Swelling/floating capability and drug release characterizations of gastroretentive drug delivery system based on a combination of hydroxyethyl cellulose and sodium carboxymethyl cellulose, PloS. one. 10 (2015) e0116914; https://doi.org/10.1371/journal.pone.011691410.1371/journal.pone.0116914430532325617891
  16. 16. M. Mucha, Rheological characteristics of semi-dilute chitosan solutions, Macromol. Chem. Phys.198 (1997) 471–484; https://doi.org/10.1002/macp.1997.02198022010.1002/macp.1997.021980220
  17. 17. A. Martínez-Ruvalcaba, J. C. Sánchez-Díaz, F. Becerra, L. E. Cruz-Barba and A. González-Álvarez, Swelling characterization and drug delivery kinetics of polyacrylamide-co-itaconic acid/chitosan hydrogels, Express Polym. Lett. 3 (2009) 25–32; https://doi.org/10.3144/expresspolymlett.2009.510.3144/expresspolymlett.2009.5
  18. 18. J. W. Lee, J. H. Park, J. R. Robinson, Bioadhesive-based dosage forms: the next generation, J. Pharm. Sci. 89 (2000) 850–866; https://doi.org/10.1002/1520-6017(200007)89:7<850::aid-jps2>3.3.co;2-710.1002/1520-6017(200007)89:7<;850::AID-JPS2>3.3.CO;2-7
  19. 19. J. Akbari, M. Saeedi, K. Morteza-Semnani, B. Zarrabi, S. S. Rostamkalaei and H. R. Kelidari, The effect of Plantago major seed mucilage combined with carbopol on the release profile and bioadhesive properties of propranolol HCl buccoadhesive tablets, Pharm. Biomed. Res.2 (2016) 84–100; https://doi.org/10.18869/acadpub.pbr.2.2.8410.18869/acadpub.pbr.2.2.84
  20. 20. F. Madsen, K. Eberth and J. D. Smart, A rheological examination of the mucoadhesive/mucus interaction: the effect of mucoadhesive type and concentration, J. Control. Release50 (1998) 167–178.10.1016/S0168-3659(97)00138-7
  21. 21. V. V. Khutoryanskiy, Advances in mucoadhesion and mucoadhesive polymers, Macromol. Biosci. 11 (2011) 748–764; https://doi.org/10.1002/mabi.20100038810.1002/mabi.201000388
  22. 22. U. Bertram and R. Bodmeier, In situ gelling, bioadhesive nasal inserts for extended drug delivery: in vitro characterization of a new nasal dosage form, Eur. J. Pharm. Sci. 27 (2006) 62–71; https://doi.org/10.1016/j.ejps.2005.08.00510.1016/j.ejps.2005.08.005
  23. 23. M. S. Surapaneni, S. K. Das and N. G. Das, Effect of excipient and processing variables on adhesive properties and release profile of pentoxifylline from mucoadhesive tablets, Drug Dev. Ind. Pharm.32 (2006) 377–387; https://doi.org/10.1080/0363904050051936710.1080/03639040500519367
  24. 24. A. Tiraferri, P. Maroni, D. Caro Rodriguez and M. Borkovec, Mechanism of chitosan adsorption on silica from aqueous solutions, Langmuir30 (2014) 4980–4988; https://doi.org/10.1021/la500680g10.1021/la500680g
  25. 25. M. Kocun, M. Grandbois and L. A. Cuccia, Single molecule atomic force microscopy and force spectroscopy of chitosan, Colloids. Surf. B. 82 (2011) 470–476; https://doi.org/10.1016/j.colsurfb.2010.10.00410.1016/j.colsurfb.2010.10.004
  26. 26. H. Abdelkader, O. Y. Abdalla and H. Salem, Formulation of controlled-release baclofen matrix tablets: Influence of some hydrophilic polymers on the release rate and in-vitro evaluation, AAPS. Pharm. Sci. Tech. 8 (2007) 156–166; https://doi.org/10.1208/pt080410010.1208/pt0804100
  27. 27. S. Prabhu, N. Kanthamneni and C. Ma, Novel combinations of rate-controlling polymers for the release of leuprolide acetate in the colon, Drug Deliv. 15 (2008) 119–125; https://doi.org/10.1080/1071754080190515710.1080/10717540801905157
  28. 28. S. Agarwal and R. S. R. Murthy, Effect of different polymer concentration on drug release rate and physicochemical properties of mucoadhesive gastroretentive tablets, Indian J. Pharm. Sci. 77 (2015) 705–714; https://doi.org/10.4103/0250-474x.17499310.4103/0250-474X.174993
  29. 29. C. Naveen, S. Nalini and R. R. Tadikonda, Use of the liquisolid compact technique for improvement of the dissolution rate of valsartan, Acta. Pharm. Sin. B.2 (2012) 502–508; https://doi.org/10.1016/j.apsb.2012.07.00510.1016/j.apsb.2012.07.005
  30. 30. V. Vigoreaux and E. S. Ghaly, Fickian and relaxational contribution quantification of drug release in a swellable hydrophilic polymer matrix, Drug Dev. Ind. Pharm. 20 (1994) 2519–2526; https://doi.org/10.3109/0363904940904265510.3109/03639049409042655
DOI: https://doi.org/10.2478/acph-2019-0022 | Journal eISSN: 1846-9558 | Journal ISSN: 1330-0075
Language: English
Page range: 381 - 398
Accepted on: Nov 30, 2018
|
Published on: Jun 26, 2019
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year
Related subjects:

© 2019 Amira A. Rashad, Sara Nageeb El-Helaly, Randa T. Abd El Rehim, Omaima N. El-Gazayerly, published by Croatian Pharmaceutical Society
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.