Have a personal or library account? Click to login
Inhibitory effect of taspine derivative TAD1822-7 on tumor cell growth and angiogenesis via suppression of EphrinB2 and related signaling pathways Cover

Inhibitory effect of taspine derivative TAD1822-7 on tumor cell growth and angiogenesis via suppression of EphrinB2 and related signaling pathways

Open Access
|Jun 2019

References

  1. 1. D. S. Dizon, L. Krilov, E. Cohen, T. Gangadhar, P. A. Ganz, T. A. Hensing, S. Hunger, S. S. Krishnamurthi, A. B. Lassman, M. J. Markham, E. Mayer, M. Neuss, S. K. Pal, L. C. Richardson, R. Schilsky, G. K. Schwartz, D. R. M. A. Spriggs, Villalona-Calero, G. Villani and G. Masters, Clinical cancer advances 2016: Annual report on progress against cancer from the American Society of Clinical Oncology, J. Clin. Oncol. 34 (2016) 987–1011; https://doi.org/10.1200/JCO.2015.65.842710.1200/JCO.2015.65.8427
  2. 2. N. Holder and R. Klein, Eph receptors and ephrins: effectors of morphogenesis, Development10 (1999) 2033–2044.10.1242/dev.126.10.2033
  3. 3. J. E. Chrencik, A. Brooun, M. L. Kraus, M. I. Recht, A. R. Kolatkar, G. W. Han, J. M. Seifert, H. Widmer, M. Auer and P. Kuhn, Structural and biophysical characterization of the EphB4*ephrinB2 protein-protein interaction and receptor specificity, J. Biol. Chem. 38 (2006) 28185–28192; https://doi.org/10.1074/jbc.M60576620010.1074/jbc.M605766200
  4. 4. S. S. Gerety, H. U. Wang, Z. F. Chen and D. J. Anderson, Symmetrical mutant phenotypes of the receptor EphB4 and its specific transmembrane ligand ephrin-B2 in cardiovascular development, Mol. Cell. 3 (1999) 403–414.10.1016/S1097-2765(00)80342-1
  5. 5. J. Folkman, Angiogenesis in cancer, vascular, rheumatoid and other diseases, Nat. Med. 1 (1995) 27–31; https://doi.org/10.1038/nm0195-2710.1038/nm0195-277584949
  6. 6. S. R. Kumar, J. Singh, G. Xia, V. Krasnoperov, L. Hassanieh, E. J. Ley, J. Scehnet, N. G. Kumar, D. Hawes, M. F. Press, F. A. Weaver and P. S. Gill, Receptor tyrosine kinase EphB4 is a survival factor in breast cancer, Am. J. Pathol. 169 (2006) 279–293; https://doi.org/10.2353/ajpath.2006.05088910.2353/ajpath.2006.050889169876916816380
  7. 7. D. Yang, C. Jin, H. Ma, M. Huang, G. Shi, J. Wang and M. Xiang, EphrinB2/EphB4 pathway in postnatal angiogenesis: a potential therapeutic target for ischemic cardiovascular disease, Angiogenesis19 (2016) 297–309; https://doi.org/10.1007/s10456-016-9514-910.1007/s10456-016-9514-927216867
  8. 8. C. Wang, J. Dong, Y. Zhang, F. Wang, H. Gao, P. Li, S. Wang and J. Zhang, Design, synthesis and biological evaluation of biphenyl urea derivatives as novel VEGFR-2 inhibitors, Medchemcomm11 (2013) 1434–1438; https://doi.org/10.1039/C3MD00192J10.1039/c3md00192j
  9. 9. Q. Y. Chen, Y. Zheng, D. M. Jiao, F. Y. Chen, H. Z. Hu, Y. Q. Wu, J. Song, J. Yan, L. J. Wu and G. Y. Lv, Curcumin inhibits lung cancer cell migration and invasion through Rac1-dependent signaling pathway, J. Nutr. Biochem. 25 (2014) 177–185; https://doi.org/10.1016/j.jnutbio.2013.10.00410.1016/j.jnutbio.2013.10.00424445042
  10. 10. Y. Chen, G. Stamatoyannopoulos and C. Z. Song, Down-regulation of CXCR4 by inducible small interfering RNA inhibits breast cancer cell invasion in vitro, Cancer Res. 63 (2003) 4801–4804.
  11. 11. M. E. Pitulescu and R. H. Adams, Eph/ephrin molecules – a hub for signaling and endocytosis, Genes Dev. 24 (2010) 2480–2492; https://doi.org/10.1101/gad.197391010.1101/gad.1973910297592421078817
  12. 12. J. S. Nielsen and K. M. McNagny, Novel functions of the CD34 family, J. Cell Sci. 121 (2008) 3683–3692; https://doi.org/10.1242/jcs.03750710.1242/jcs.03750718987355
  13. 13. T. Makinen, R. H. Adams, J. Bailey, Q. Lu, A. Ziemiecki, K. Alitalo, R. Klein and G. A. Wilkinson, PDZ interaction site in ephrinB2 is required for the remodeling of lymphatic vasculature, Genes Dev. 19 (2005) 397–410; https://doi.org/10.1101/gad.33010510.1101/gad.33010554651815687262
  14. 14. T. V. Byzova, C. K. Goldman, N. Pampori, K. A. Thomas, A. Bett, S. J. Shattil and E. F. Plow, A mechanism for modulation of cellular responses to VEGF: activation of the integrins, Mol. Cell. 6 (2000) 851–860.10.1016/S1097-2765(05)00076-6
  15. 15. T. Makinen, T. Veikkola, S. Mustjoki, T. Karpanen, B. Catimel, E. C. Nice, L. Wise, A. Mercer, H. Kowalski, D. Kerjaschki, S. A. Stacker, M. G. Achen and K. Alitalo, Isolated lymphatic endothelial cells transduce growth, survival and migratory signals via the VEGF-C/D receptor VEGFR-3, EMBO J. 20 (2001) 4762–4773; https://doi.org/10.1093/emboj/20.17.476210.1093/emboj/20.17.476212559611532940
DOI: https://doi.org/10.2478/acph-2019-0021 | Journal eISSN: 1846-9558 | Journal ISSN: 1330-0075
Language: English
Page range: 423 - 431
Accepted on: Dec 3, 2018
Published on: Jun 26, 2019
Published by: Croatian Pharmaceutical Society
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year
Related subjects:

© 2019 Rui Liu, Runze Yu, Yuxin Cui, Mengying Fan, Bo Wang, Yanmin Zhang, published by Croatian Pharmaceutical Society
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.