Have a personal or library account? Click to login
Quantitative analysis and resolution of pharmaceuticals in the environment using multivariate curve resolution-alternating least squares (MCR-ALS) Cover

Quantitative analysis and resolution of pharmaceuticals in the environment using multivariate curve resolution-alternating least squares (MCR-ALS)

By: Ahmed Mostafa and  Heba Shaaban  
Open Access
|Mar 2019

References

  1. 1. S. D. Richardson and T. A. Ternes, Water analysis: emerging contaminants and current issues, Anal. Chem. 83 (2011) 4614–4648; https://doi.org/10.1021/ac200915r10.1021/ac200915r
  2. 2. K. Kümmerer, Pharmaceuticals in the Environment: Sources, Fate, Effects and Risks, Springer Science & Business Media, Heidelberg 2008, pp. 521.
  3. 3. D. S. Aga, Fate of Pharmaceuticals in the Environment and in Water Treatment Systems, CRC Press, Boca Raton (FL) 2007.
  4. 4. J. Rivera-Utrilla, M. Sánchez-Polo, M. Á. Ferro-García, G. Prados-Joya and R. Ocampo-Pérez, Pharmaceuticals as emerging contaminants and their removal from water. A review, Chemosphere, 93 (2013) 1268–1287; https://doi.org/10.1016/j.chemosphere.2013.07.05910.1016/j.chemosphere.2013.07.059
  5. 5. T. A. Ternes, Occurrence of drugs in German sewage treatment plants and rivers 1, Water Res. 32 (1998) 3245–3260; https://doi.org/10.1016/S0043-1354(98)00099-210.1016/S0043-1354(98)00099-2
  6. 6. M. D. Celiz, J. Tso and D. S. Aga, Pharmaceutical metabolites in the environment: analytical challenges and ecological risks, Environ. Toxicol. Chem. 28 (2009) 2473–2484; https://doi.org/10.1897/09-173.110.1897/09-173.119663539
  7. 7. H. Shaaban, High speed hydrophilic interaction liquid chromatographic method for simultaneous determination of selected pharmaceuticals in wastewater using a cyano-bonded silica column, J. Liq. Chromatogr. Relat. Technol. 41 (2018) 180–187; https://doi.org/10.1080/10826076.2018.142928210.1080/10826076.2018.1429282
  8. 8. E. Gracia-Lor, N. I. Rousis, E. Zuccato, R. Bade, J. A. Baz-Lomba, E. Castrignanò, A. Causanilles, F. Hernández, B. Kasprzyk-Hordern and J. Kinyua, Estimation of caffeine intake from analysis of caffeine metabolites in wastewater, Sci. Total Environ. 609 (2017) 1582–1588; https://doi.org/10.1016/j.scitotenv.2017.07.25810.1016/j.scitotenv.2017.07.25828810510
  9. 9. F. Tohidi and Z. Cai, Fate and mass balance of triclosan and its degradation products: comparison of three different types of wastewater treatments and aerobic/anaerobic sludge digestion, J. Hazard. Mater. 323 (2017) 329–340; https://doi.org/10.1016/j.jhazmat.2016.04.03410.1016/j.jhazmat.2016.04.03427166780
  10. 10. H. Shaaban and T. Górecki, High temperature-high efficiency liquid chromatography using sub-2 µm coupled columns for the analysis of selected non-steroidal anti-inflammatory drugs and veterinary antibiotics in environmental samples, Anal. Chim. Acta702 (2011) 136–143; https://doi.org/10.1016/j.aca.2011.06.04010.1016/j.aca.2011.06.04021819871
  11. 11. K. Kotnik, T. Kosjek, U. Krajnc and E. Heath, Trace analysis of benzophenone-derived compounds in surface waters and sediments using solid-phase extraction and microwave-assisted extraction followed by gas chromatography-mass spectrometry, Anal. Bioanal. Chem. 406 (2014) 3179–3190; https://doi.org/10.1007/s00216-014-7749-010.1007/s00216-014-7749-024682231
  12. 12. A. El-Gindy, S. Emara and A. Mostafa, UV partial least-squares calibration and liquid chromatographic methods for direct quantitation of levofloxacin in urine, J. AOAC Int. 90 (2007) 1258–1265; https://doi.org/10.1039/c0ay00662a10.1039/c0ay00662a
  13. 13. R. Tauler, Multivariate curve resolution applied to second order data, Chemom. Intel. Lab. Syst. 30 (1995) 133–146; https://doi.org/10.1016/0169-7439(95)00047-X10.1016/0169-7439(95)00047-X
  14. 14. W. Chen, X.-Y. Liu, B.-C. Huang, L.-F. Wang, H.-Q. Yu and B. Mizaikoff, Probing membrane fouling via infrared attenuated total reflection mapping coupled with multivariate curve resolution, Chemphyschem17 (2016) 358–363; https://doi.org/10.1002/cphc.20150093210.1002/cphc.20150093226639164
  15. 15. M. Navarro-Reig, J. Jaumot, A. Baglai, G. Vivó-Truyols, P. J. Schoenmakers and R. Tauler, Untargeted comprehensive two-dimensional liquid chromatography coupled with high-resolution mass spectrometry analysis of rice metabolome using multivariate curve resolution, Anal. Chem. 89 (2017) 7675–7683; https://doi.org/10.1021/acs.analchem.7b0164810.1021/acs.analchem.7b0164828643516
  16. 16. D. A. Forchetti and R. J. Poppi, Use of NIR hyperspectral imaging and multivariate curve resolution (MCR) for detection and quantification of adulterants in milk powder, LWT-Food Sci. Technol. 76 (2017) 337–343; https://doi.org/10.1016/j.lwt.2016.06.04610.1016/j.lwt.2016.06.046
  17. 17. F. Puig-Castellví, I. Alfonso and R. Tauler, Untargeted assignment and automatic integration of 1H NMR metabolomic datasets using a multivariate curve resolution approach, Anal. Chim. Acta964 (2017) 55–66; https://doi.org/10.1016/j.aca.2017.02.01010.1016/j.aca.2017.02.01028351639
  18. 18. J. B. Ghasemi, M. K. Rofouei and N. Amiri, Multivariate curve resolution alternating least squares in the quantitative determination of sulfur using overlapped S (Kα)–Mo (Lα) emission peaks by wavelength dispersive X-ray fluorescence spectrometry, X-Ray Spectrom. 44 (2015) 75–80; https://doi.org/10.1021/acs.analchem.6b0311610.1021/acs.analchem.6b0311627753475
  19. 19. H. Parastar and H. Shaye, Comparative study of partial least squares and multivariate curve resolution for simultaneous spectrophotometric determination of pharmaceuticals in environmental samples, RSC Adv. 5 (2015) 70017–70024; https://doi.org/10.1039/C5RA10658C10.1039/C5RA10658C
  20. 20. R. L. Pérez and G. M. Escandar, Liquid chromatography with diode array detection and multivariate curve resolution for the selective and sensitive quantification of estrogens in natural waters, Anal. Chim. Acta835 (2014) 19–28; https://doi.org/10.1016/j.aca.2014.05.01510.1016/j.aca.2014.05.01524952625
  21. 21. C. Ruckebusch and L. Blanchet, Multivariate curve resolution: a review of advanced and tailored applications and challenges, Anal. Chim. Acta765 (2013) 28–36; https://doi.org/10.1016/j.aca.2012.12.02810.1016/j.aca.2012.12.02823410623
  22. 22. M. Garrido, F. Rius and M. Larrechi, Multivariate curve resolution-alternating least squares (MCR-ALS) applied to spectroscopic data from monitoring chemical reactions processes, Anal. Bioanal. Chem. 390 (2008) 2059–2066; https://doi.org/10.1007/s00216-008-1955-610.1007/s00216-008-1955-618320174
  23. 23. J. Santos, I. Aparicio, E. Alonso and M. Callejón, Simultaneous determination of pharmaceutically active compounds in wastewater samples by solid phase extraction and high-performance liquid chromatography with diode array and fluorescence detectors, Anal. Chim. Acta550 (2005) 116–122; https://doi.org/10.1016/j.aca.2005.06.06410.1016/j.aca.2005.06.064
  24. 24. J. Jaumot, A. de Juan and R. Tauler, MCR-ALS GUI 2.0: New features and applications, Chemom. Intel. Lab. Syst. 140 (2015) 1–12; https://doi.org/10.1016/j.chemolab.2014.10.00310.1016/j.chemolab.2014.10.003
  25. 25. Multivariate Curve Resolution Homepage; http://www.mcrals.info; last access date Sept 4, 2018
  26. 26. USP 29, NF 24, USP Convention, Rockville (MD) USA, 2005; http://www.pharmacopeia.cn/usp.asp; last access date Sept 4, 2018
  27. 27. R. G. Brereton, Multilevel multifactor designs for multivariate calibration, Analyst122 (1997) 1521–1529; https://doi.org/10.1039/a703654j10.1039/a703654j
  28. 28. T. Azzouz and R. Tauler, Application of multivariate curve resolution alternating least squares (MCR-ALS) to the quantitative analysis of pharmaceutical and agricultural samples, Talanta74 (2008) 1201–1210; https://doi.org/10.1016/j.talanta.2007.08.02410.1016/j.talanta.2007.08.02418371770
  29. 29. A. R. de Carvalho, M. del Nogal Sánchez, J. Wattoom and R. G. Brereton, Comparison of PLS and kinetic models for a second-order reaction as monitored using ultraviolet visible and mid-infrared spectroscopy, Talanta68 (2006) 1190–1200; https://doi.org/10.1016/j.talanta.2005.07.05310.1016/j.talanta.2005.07.05318970450
  30. 30. W. Windig and J. Guilment, Interactive self-modeling mixture analysis, Anal. Chem. 63 (1991) 1425–1432; https://doi.org/10.1021/ac00014a01610.1021/ac00014a016
  31. 31. R. Bro and S. De Jong, A fast non-negativity-constrained least squares algorithm, J. Chemom. 11 (1997) 393–401; https://doi.org/10.1002/(SICI)1099-128X(199709/10)11:53.0.CO;2-L10.1002/(SICI)1099-128X(199709/10)11:5<;393::AID-CEM483>3.0.CO;2-L
DOI: https://doi.org/10.2478/acph-2019-0011 | Journal eISSN: 1846-9558 | Journal ISSN: 1330-0075
Language: English
Page range: 217 - 231
Accepted on: Sep 29, 2018
|
Published on: Mar 28, 2019
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year
Related subjects:

© 2019 Ahmed Mostafa, Heba Shaaban, published by Croatian Pharmaceutical Society
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.